Tóm tắt

Achieving ecologically sustainable development requires utilizing the added value of waste sources to synthesize functional materials. Currently, Vietnam is a country with developed agriculture, and agricultural by-products are increasing over the years. Making the most of agricultural by- products is a difficult task for local authorities. Agricultural by-products account for a large amount of output such as straw, rice husk, and bagasse. However, the agricultural by- product that accounts for the highest proportion is corn cobs. Due to its physical characteristics, corn cobs are difficult to decompose, leaving a large output for food processing factories. This study describes the process of converting corn cobs by pyrolysis under oxygen limitation into magnetic biochar. The described magnetic biochar can be produced by an improved pyrolysis process at 500°C using iron sulfate as a magnetic precursor and limited oxygen from scavenging gas (gas mixture ratio is 4:1 nitrogen/oxygen). Iron oxide impregnation improves heavy metal ion removal efficiency and increases adsorption capacity for application in wastewater treatment processes. Results are evaluated through material analysis methods such as SEM, FTIR, BET, XRD, and TGA. This article proposes a feasible waste filtration method to turn corn cobs into valuable materials used as effective heavy metal adsorbent.

Tài liệu tham khảo

REFERENCES

Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715.

Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource technology, 131, 374-379.

Al-Wabel, M. I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource technology, 131, 374-379.

Amalina, F., Abd Razak, A. S., Krishnan, S., Sulaiman, H., Zularisam, A. W., & Nasrullah, M. (2022). Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications. Cleaner Materials, 6, 100137.

Bhuyar, P., Hong, D. D., Mandia, E., Rahim, M. H. A., Maniam, G. P., & Govindan, N. (2019). Desalination of polymer and chemical industrial wastewater by using green photosynthetic microalgae, Chlorella sp. Maejo International Journal of Energy and Environmental Communication, 1(3), 9-19.

Cao, X., & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its     potential     use      in      remediation. Bioresource technology, 101(14), 5222-5228.

Cao, X., & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource technology, 101(14), 5222-5228.

Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater  treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492.

Essandoh, M., Wolgemuth, D., Pittman, C. U., Mohan, D., & Mlsna, T. (2017). Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environmental Science and Pollution Research, 24, 4577-4590.

Ghorbani, M., Konvalina, P., Neugschwandtner, R. W., Kopecký, M., Amirahmadi, E., Moudrý Jr, J., & Menšík, L. (2022). Preliminary findings on cadmium bioaccumulation and photosynthesis in rice (Oryza sativa L.) and maize (Zea mays L.) using biochar made from C3-and C4- originated straw. Plants, 11(11), 1424.

Isaac, R., & Siddiqui, S. (2022). Sequestration of Ni (II) and Cu (II) using FeSO4 modified Zea mays husk magnetic biochar: Isotherm, kinetics, thermodynamic studies and RSM. Journal of Hazardous Materials Advances, 8, 100162.

Jawad, A. H., Hum, N. N. M. F., Farhan, A. M., & Mastuli, M. S. (2020). Biosorption of methylene blue dye by rice (Oryza sativa L.) straw: adsorption and mechanism study. Desalin Water Treat, 190, 322-330.

Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental science & technology, 44(4), 1247-1253.

Manyà, J. J. (2012). Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental science & technology, 46(15), 7939-7954.

Qin, Y., Wang, H., Li, X., Cheng, J. J., & Wu,W. (2017). Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar. Bioresource technology, 245, 1058-1066.

Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia- Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37-48.

Sun, D., Li, F., Jin, J., Khan, S., Eltohamy, K. M., He, M., & Liang, X. (2022). Qualitative and quantitative investigation on adsorption mechanisms of Cd (II) on modified biochar derived from co- pyrolysis of straw and sodium phytate. Science of the Total Environment, 829, 154599.

Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., ... & Li, J. (2016). Biochar-based  nano-composites  for  the decontamination of wastewater: a review. Bioresource technology, 212, 318-333.

Uchimiya, M., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2010). Sorption of deisopropylatrazine on broiler litter biochars. Journal of agricultural and food chemistry, 58(23), 12350-12356.

Wang, H., Zhao, W., Chen, Y., & Li, Y. (2020). Nickel aluminum layered double oxides modified magnetic biochar from waste corncob for efficient removal of acridine orange. Bioresource Technology, 315, 123834.

Yin, Z., Xu, S., Liu, S., Xu, S., Li, J., & Zhang, Y. (2020). A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresource technology, 300, 122680.

Zhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D. C., & Hou, D. (2018). Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production, 174, 977-987.

Zhao, Q., Xu, T., Song, X., Nie, S., Choi, S. E., & Si, C. (2021). Preparation and application in water treatment of magnetic biochar. Frontiers in Bioengineering and Biotechnology, 9, 769667.