ENHANCING CIRCULAR PLANAR SOLAR CONCENTRATOR PERFORMANCE THROUGH PARAMETER OPTIMIZATION
Tóm tắt
This study delved into the influences of diverse parameters on a circular planar solar concentrator’s performance, with an aim to optimize its efficiency, concentration ratio and acceptance angle. The simulation results disclosed a groundbreaking revelation: by achieving an efficiency rate of 82% and a concentration ratio at 1000 within ±2 degrees' acceptance angle - our model surpassed previous performance standards. The significance of this breakthrough amplifies the potential efficacy inherent in our optimized concentrator design for peak solar energy harvesting.
Tài liệu tham khảo
Goldschmidt, J. C., Peters, M., Bösch, A., Helmers, H., Dimroth, F., Glunz, S. W., & Willeke, G. (2009). Increasing the efficiency of fluorescent concentrator systems. Solar Energy Materials and Solar Cells, 93(2) https://doi.org/10.1016/J.SOLMAT.2008.09.048
Tao, T., Hongfei, Z., Kaiyan, H., & Mayere, A. (2011). A new trough solar concentrator and its performance analysis. Solar Energy, 85(1), 198-207. https://doi.org/10.1016/j.solener.2010.08.017
Xu, J., Chen, F., Xia, E., Gao, C., & Deng, C. (2020). An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber. Energy, 197, 117212. https://doi.org/10.1016/j.energy.2020.117212
Li, Y., Jiao, F., Chen, F., & Zhang, Z. (2021). Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber. Renewable Energy, 168, 913-926. https://doi.org/10.1016/j.renene.2020.12.101
Manikumar, R., & Arasu, A. V. (2014). Design Parameters Optimization and Theoretical Performance Analysis of Linear Fresnel Reflector Solar Concentrator with Multi Tube Absorber. Advanced Materials Research, 984, 807-818. https://doi.org/10.4028/www.scientific.net/AMR.984-985.807
Gong, J. H., Wang, J., & Lund, P. D. (2021). Improving stability and heat transfer through a beam in a semi-circular absorber tube of a large-aperture trough solar concentrator. Energy, 228, 120614. https://doi.org/10.1016/j.energy.2021.120614
Yan, J., Cheng, Z. R., & Peng, Y. D. (2018). Effects of geometrical parameters of a dish concentrator on the optical performance of a cavity receiver in a solar dish‐Stirling system. International journal of energy research, 42(6), 2152-2168. https://doi.org/10.1002/er.3998
Giannuzzi, A., Diolaiti, E., Lombini, M., De Rosa, A., Marano, B., Bregoli, G., ... & Schreiber, L. (2015). Enhancing the efficiency of solar concentrators by controlled optical aberrations: Method and photovoltaic application. Applied Energy, 145, 211-222. https://doi.org/10.1016/j.apenergy.2015.01.085
Gong, J. H., Wang, J., Lund, P. D., Zhao, D. D., Hu, E. Y., & Jin, W. (2020). Improving the performance of large-aperture parabolic trough solar concentrator using semi-circular absorber tube with external fin and flat-plate radiation shield. Renewable Energy, 159, 1215-1223. https://doi.org/10.1016/j.renene.2020.06.059
Raine, D. F., Muhammad-Sukki, F., Ramirez-Iniguez, R., Jafry, T., & Gamio, C. (2021). Indoor performance analysis of genetically optimized circular rotational square hyperboloid (GOCRSH) concentrator. Solar Energy, 221, 445-455. https://doi.org/10.1016/j.solener.2021.04.060
Gao, C., & Chen, F. (2020). Model building and optical performance analysis on a novel designed compound parabolic concentrator. Energy Conversion and Management, 209, 112619. https://doi.org/10.1016/j.enconman.2020.112619
Jing-hu, G., Yong, L., Jun, W., & Lund, P. (2023). Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology. Energy, 268, 12664 https://doi.org/10.1016/j.energy.2023.12664
© 2023 DNTU. All rights reserved.