ENHANCING CIRCULAR PLANAR SOLAR CONCENTRATOR PERFORMANCE THROUGH PARAMETER OPTIMIZATION

Tóm tắt

This study delved into the influences of diverse parameters on a circular planar solar concentrator’s performance, with an aim to optimize its efficiency, concentration ratio and acceptance angle. The simulation results disclosed a groundbreaking revelation: by achieving an efficiency rate of 82% and a concentration ratio at 1000 within ±2 degrees' acceptance angle - our model surpassed previous performance standards. The significance of this breakthrough amplifies the potential efficacy inherent in our optimized concentrator design for peak solar energy harvesting.

Tài liệu tham khảo

Goldschmidt, J. C., Peters, M., Bösch, A., Helmers, H., Dimroth, F., Glunz, S. W., & Willeke, G. (2009). Increasing the efficiency of fluorescent concentrator systems. Solar Energy Materials and Solar Cells93(2) https://doi.org/10.1016/J.SOLMAT.2008.09.048

Tao, T., Hongfei, Z., Kaiyan, H., & Mayere, A. (2011). A new trough solar concentrator and its performance analysis. Solar Energy85(1), 198-207. https://doi.org/10.1016/j.solener.2010.08.017

Xu, J., Chen, F., Xia, E., Gao, C., & Deng, C. (2020). An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber. Energy197, 117212. https://doi.org/10.1016/j.energy.2020.117212

Li, Y., Jiao, F., Chen, F., & Zhang, Z. (2021). Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber. Renewable Energy168, 913-926. https://doi.org/10.1016/j.renene.2020.12.101

Manikumar, R., & Arasu, A. V. (2014). Design Parameters Optimization and Theoretical Performance Analysis of Linear Fresnel Reflector Solar Concentrator with Multi Tube Absorber. Advanced Materials Research984, 807-818. https://doi.org/10.4028/www.scientific.net/AMR.984-985.807

Gong, J. H., Wang, J., & Lund, P. D. (2021). Improving stability and heat transfer through a beam in a semi-circular absorber tube of a large-aperture trough solar concentrator. Energy228, 120614. https://doi.org/10.1016/j.energy.2021.120614

Yan, J., Cheng, Z. R., & Peng, Y. D. (2018). Effects of geometrical parameters of a dish concentrator on the optical performance of a cavity receiver in a solar dish‐Stirling system. International journal of energy research42(6), 2152-2168. https://doi.org/10.1002/er.3998

Giannuzzi, A., Diolaiti, E., Lombini, M., De Rosa, A., Marano, B., Bregoli, G., ... & Schreiber, L. (2015). Enhancing the efficiency of solar concentrators by controlled optical aberrations: Method and photovoltaic application. Applied Energy145, 211-222. https://doi.org/10.1016/j.apenergy.2015.01.085

Gong, J. H., Wang, J., Lund, P. D., Zhao, D. D., Hu, E. Y., & Jin, W. (2020). Improving the performance of large-aperture parabolic trough solar concentrator using semi-circular absorber tube with external fin and flat-plate radiation shield. Renewable Energy159, 1215-1223. https://doi.org/10.1016/j.renene.2020.06.059

Raine, D. F., Muhammad-Sukki, F., Ramirez-Iniguez, R., Jafry, T., & Gamio, C. (2021). Indoor performance analysis of genetically optimized circular rotational square hyperboloid (GOCRSH) concentrator. Solar Energy, 221, 445-455. https://doi.org/10.1016/j.solener.2021.04.060

Gao, C., & Chen, F. (2020). Model building and optical performance analysis on a novel designed compound parabolic concentrator. Energy Conversion and Management, 209, 112619. https://doi.org/10.1016/j.enconman.2020.112619

Jing-hu, G., Yong, L., Jun, W., & Lund, P. (2023). Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology. Energy268, 12664  https://doi.org/10.1016/j.energy.2023.12664