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Received date: 30/03/2024  Efficient and accurate recognition of human interactions is 

crucial for numerous service applications, including security 

surveillance and public safety. However, achieving real-time 

interaction recognition on resource-constrained edge devices 

poses significant computational challenges. In this paper, we 

propose a lightweight methodology for detecting human 

activity and interactions in video streams, specifically 

tailored for edge computing environments. Our approach 

utilizes distance estimation and interaction detection based 

on pose estimation techniques, enabling rapid analysis of 

video data while conserving computational resources. By 

leveraging a distance grid for proximity analysis and 

TensorFlow's MoveNet for pose estimation, our method 

achieves promising results in interaction recognition. We 

demonstrate the feasibility of our approach through empirical 

evaluation and discuss its potential implications for real-

world deployment on edge devices. 
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1. INTRODUCTION 

The realm of computer vision has 

witnessed remarkable advancements, 

particularly in the domain of action 

recognition within videos. This 

technological niche holds immense potential 

for diverse applications, ranging from 

bolstering security measures to enhancing 

public safety and refining sports analytics 

(Y. Wang et al., 2023). The ability to discern 

and interpret human actions depicted in 

video streams not only facilitates 

surveillance and monitoring but also opens 

avenues for immersive gaming experiences 

and interactive user interfaces (Kim et al., 

2021; Patrikar & Parate, 2022; F. Wang et 

al., 2020). 

The fruition of robust action recognition 

systems is impeded by the substantial 

computational resources they demand. The 

intricacies of data collection, preprocessing, 

feature extraction, predictive modeling, and 

post-processing pose significant challenges, 

particularly when attempting to integrate 

such systems into resource-constrained edge 

devices, such as smart Closed-Circuit 

Television (CCTV) setups (Azimi et al., 

2023; Guo et al., 2019). 

While action recognition systems have 

made significant strides, the subset of 
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interaction recognition presents an even 

more formidable challenge. Interaction 

recognition entails discerning and analyzing 

the nuanced actions and gestures exchanged 

among multiple individuals within a scene 

(Deng et al., 2020). The ability to detect and 

interpret interactions in real-time holds 

immense promise, particularly in contexts 

where swift responses are imperative, such 

as crime prevention and emergency response 

scenarios (Ezzat et al., 2021; Nikouei et al., 

2021). 

This paper presents a novel approach 

tailored for interaction recognition in video 

streams, specifically optimized for edge 

computing environments. By leveraging 

lightweight algorithms and innovative 

methodologies, we aim to enable real-time 

interaction detection on edge devices, 

thereby empowering these systems to 

contribute meaningfully to societal welfare 

and safety. Through a combination of 

distance estimation, pose analysis, and 

activity detection techniques, our proposed 

method endeavors to overcome the 

computational constraints inherent in edge 

computing while delivering accurate and 

timely interaction recognition capabilities. 

We delve into the intricacies of our proposed 

method, elucidating its underlying 

mechanisms, implementation details, and 

empirical results. By presenting a 

comprehensive overview of our approach, 

we aspire to contribute to the burgeoning 

field of computer vision and edge 

computing, fostering advancements that 

resonate across various domains, from 

security and surveillance to healthcare and 

beyond (Huang et al., 2021; Q. Wang et al., 

2024). 

2. RELATED WORKS 

Numerous studies have explored the 

realm of interaction recognition, leveraging 

various methodologies and technologies to 

achieve accurate and efficient analysis of 

human activities in video data. One 

prominent line of research focuses on the 

utilization of deep learning techniques for 

pose estimation and activity recognition. 

Models such as OpenPose and PoseNet have 

demonstrated remarkable capabilities in 

detecting human poses and inferring actions 

from video sequences, laying the foundation 

for subsequent advancements in interaction 

recognition. 

Another area of interest lies in the 

development of lightweight algorithms and 

architectures tailored for edge computing 

environments. Researchers have proposed 

novel approaches for optimizing pose 

estimation and activity analysis algorithms 

to operate efficiently on resource-

constrained edge devices. By leveraging 

techniques such as model quantization, 

network pruning, and hardware acceleration, 

these studies have enabled real-time 

interaction recognition on edge devices with 

limited computational capabilities. 

The efforts have been made to explore 

the fusion of multiple modalities, such as 

audio and visual cues, for enhanced 

interaction recognition. Studies have 

demonstrated the synergistic benefits of 

combining audio-based event detection with 

visual analysis techniques, leading to 

improved accuracy and robustness in 

recognizing complex interactions. 

Furthermore, the integration of context-

awareness and semantic understanding has 

emerged as a promising direction for 

enriching interaction recognition systems 

with contextual information. 
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 The advancements in federated learning 

and distributed computing have paved the 

way for collaborative interaction recognition 

across networked edge devices. Researchers 

have proposed federated learning 

frameworks that enable edge devices to 

collectively train interaction recognition 

models while preserving data privacy and 

security. By harnessing the collective 

intelligence of edge devices, these 

approaches facilitate scalable and 

decentralized interaction analysis in 

dynamic and distributed environments. 

3. METHODOLOGY 

Data Collection and Preprocessing: The 

methodology initiates with meticulous data 

collection to curate a diverse and 

representative dataset suitable for training 

and testing the interaction recognition 

model. This dataset encompasses a wide 

array of human interactions, meticulously 

selected to encapsulate various scenarios 

encountered in real-world environments. 

Subsequently, the collected data undergoes 

rigorous preprocessing, wherein it is 

standardized in terms of format, resolution, 

and encoding. Noise reduction techniques 

are applied to enhance the clarity of the 

video content, ensuring optimal performance 

during subsequent processing stages. The 

basic process of the proposed method is 

shown in Figure 1.   

 

 

Figure 1. The basic process of the proposed 

method 

Feature extraction: Feature extraction 

serves as a pivotal step in the interaction 

recognition pipeline, wherein relevant 

information is distilled from the raw video 

frames to facilitate subsequent analysis. In 

our methodology, feature extraction is 

primarily achieved through the application 

of advanced pose estimation algorithms. 

These algorithms meticulously extract key 

body landmarks and spatial configurations 

from each frame, enabling the representation 

of human poses in a compact and 

informative manner. This foundational step 

lays the groundwork for subsequent 

interaction analysis. 

Interaction detection: The core of our 

methodology revolves around the detection 

of interpersonal interactions within the video 

stream. This process commences with the 

estimation of distances between individuals 

present in the scene. Leveraging the spatial 

relationships encoded in the pose estimates, 

the system determines the proximity of 

individuals and triggers interaction analysis 

when they come into close contact. To 

achieve efficient interaction detection, a 

distance grid approach is employed. A 

meticulously calibrated distance grid is 

generated based on known physical 

dimensions and camera parameters, 

facilitating the estimation of real-world 

distances between individuals. 

Activity analysis: Upon detecting 

instances of close proximity between 

individuals, the system proceeds to activity 

analysis, wherein it discerns the nature of 

the interaction. This stage involves the 

application of a pre-trained custom pose 

estimation model tailored specifically for 

interaction recognition. The model is adept 

at classifying various interaction types based 

on the spatial configurations and temporal 



 163 JOURNAL OF SCIENCE AND TECHNOLOGY DONG NAI TECHNOLOGY UNIVERSITY Special Issue 

dynamics of the detected poses. Activities 

such as conversations, handshakes, and 

physical gestures are identified and 

annotated in real-time, enabling 

comprehensive interaction analysis. 

Implementation details: The proposed 

methodology is underpinned by state-of-the-

art deep learning frameworks and libraries, 

including TensorFlow and OpenCV. Pose 

estimation models, such as MoveNet, are 

employed for extracting key body 

landmarks, while custom neural network 

architectures are trained for interaction 

recognition. Model training is conducted on 

high-performance computing infrastructure, 

with graphics processing units (GPUs) 

utilized to expedite the optimization process. 

Evaluation metrics: The performance of 

the interaction recognition system is 

rigorously evaluated using standard metrics, 

including precision, recall, and F1-score. 

Additionally, qualitative assessments may be 

conducted to gauge the system's robustness 

to various environmental conditions and 

interaction scenarios. 

Deployment and optimization: Once 

trained and validated, the interaction 

recognition model is seamlessly deployed on 

edge computing devices, such as smart 

CCTV cameras or IoT devices. Model 

optimization techniques, including 

quantization and pruning, are employed to 

minimize memory and computational 

requirements, ensuring efficient operation on 

resource-constrained hardware platforms. 

The proposed methodology for 

interaction recognition on edge devices 

combines pose estimation using 

TensorFlow's MoveNet with a distance-

based interaction detection approach. This 

method is designed to be lightweight and 

efficient, making it suitable for deployment 

on resource-constrained edge devices. The 

core components include pose estimation, 

distance grid calibration, and interaction 

detection. 

Pose estimation with MoveNet: Pose 

estimation is the first step in the interaction 

recognition pipeline. MoveNet, a highly 

efficient deep learning model, is used for 

this purpose. Video frames are captured 

from the camera and fed into the MoveNet 

model. MoveNet detects 17 keypoints on the 

human body, including key positions such as 

the head, shoulders, elbows, wrists, hips, 

knees, and ankles. The coordinates of the 

keypoints are extracted for each person in 

the frame. This information is used to create 

bounding boxes around each detected 

person, isolating individual figures for 

further analysis. 

Distance grid calibration: To accurately 

estimate the distance between individuals, a 

distance grid is generated through a 

calibration process. A reference object of 

known dimensions (e.g., a meter stick) is 

placed within the camera's view to establish 

a correlation between image pixels and real-

world distances. Using the reference object, 

a grid is overlaid on the video frame. Each 

cell in the grid represents a fixed real-world 

distance (e.g., 50 cm). This grid is used to 

rapidly estimate distances by counting the 

number of cells between detected keypoints. 

Distance calculation and proximity 

detection: Distance calculation between 

individuals is performed using the calibrated 

grid. For each frame, the detected keypoints 

(particularly those on the feet) are mapped 

onto the distance grid. The number of grid 

cells between the keypoints of different 

individuals is counted. For example, if there 

are 7 cells between two keypoints and each 
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 cell represents 50 cm, the estimated distance 

is 3.5 meters. A predefined threshold (e.g., 

1.5 meters) is used to determine if 

individuals are close enough to interact. If 

the distance between two individuals is less 

than this threshold, interaction detection is 

triggered. 

Interaction detection: Interaction 

detection is performed when individuals are 

within the defined proximity threshold. 

Once proximity is established, the "Activity 

Analysis" block uses a custom-trained pose 

estimation model to classify specific 

interactions. This model is trained to 

recognize predefined interactions such as 

handshakes, high-fives, conversations, 

kicking, and hitting. The custom model is 

trained using a dataset of 800 videos and 

images collected via web crawling. This 

dataset includes various interaction types to 

ensure robust training. The current model 

accuracy is approximately 65%, with plans 

for further improvement through increased 

training data and model optimization. 

Integration and deployment: The trained 

pose estimation and interaction detection 

models are converted to TensorFlow Lite 

format for deployment on Android devices. 

TensorFlow Lite is optimized for mobile and 

edge deployment, ensuring efficient 

inference on resource-constrained devices. 

The system processes live video streams 

from the device's camera, applying pose 

estimation, distance calculation, and 

interaction detection in real-time. The 

effectiveness of the proposed method is 

demonstrated through examples of 

interaction recognition, showing the 

system's capability to accurately detect and 

classify interactions in real-time video 

streams. 

Illustration and validation: Figure 2 

illustrates the process of distance estimation 

using the distance grid. Keypoints on the 

feet of detected individuals are compared 

against the grid to estimate their locations 

and the distance between them. Figure 3 

provides examples of interaction recognition 

results, showcasing the system's ability to 

identify various interactions such as 

handshakes and high-fives. By providing a 

detailed breakdown of each component and 

the overall process, this methodology 

section aims to enhance reader 

understanding and facilitate replicability of 

the proposed interaction recognition 

approach on edge devices. 

4. IMPLEMENTATION AND RESULTS 

To estimate the location and distance 

between subjects, a distance grid is 

generated through a calibration process. 

Keypoints detected from pose estimation are 

utilized to create a bounding box for each 

individual. The calibrator incorporates 

height information and computed bounding 

box height to establish the correspondence 

between image pixels and actual distance 

metrics. Utilizing this correspondence, a 

distance grid specific to the current scene is 

generated. When individuals appear within 

the scene, their foot keypoints are compared 

with the grid to estimate their respective 

locations. Simple grid counting techniques 

are then employed to estimate the distance 

between individuals, as depicted in Figure 

2. For instance, if there are 7 grids between 

two people, and each grid represents 50 cm, 

then the estimated distance is approximately 

3.5 meters. 
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Figure 2.  Distance estimation using the distance 

grid. 

For pose estimation and subsequent 

activity analysis, TensorFlow's MoveNet is 

utilized. MoveNet, a bottom-up estimation 

model, excels in localizing 17 body 

keypoints and utilizes MobileNet as its 

backbone, rendering it suitable for edge 

devices. Moreover, the multi-pose version of 

MoveNet facilitates simultaneous detection 

of up to six individuals within a scene. 

For custom model training, a diverse set 

of human interactions including 

conversations, kicking, hand-hitting, high-

fives, and handshakes were initially 

considered. A comprehensive dataset 

comprising 800 videos and images was 

collated through web crawling for training 

purposes. However, due to the limited 

number of training samples, the current 

accuracy of the trained model for interaction 

identification stands at approximately 65%. 

Future efforts are directed towards 

enhancing and improving the performance 

of the custom model. 

The trained model underwent rigorous 

testing on a PC environment and was 

subsequently converted to TensorFlow Lite 

format for deployment on Android devices. 

Example results showcasing the efficacy of 

interaction recognition are depicted in 

Figure 3. 

 
(a) 

 
(b) 

Figure 3. Example results for interaction 

recognition. 

The implementation and evaluation of 

our methodology demonstrate promising 

results in accurately detecting and 

classifying human interactions in real-world 

scenarios. Through iterative refinement and 

ongoing optimization efforts, we aim to 

further enhance the performance and 

scalability of our interaction recognition 

system for deployment in diverse edge 

computing environments. 

The evaluation of the proposed 

interaction recognition method was 

conducted using a dataset comprising 800 

videos and images collected via web 

crawling. The performance of the method 

was assessed in terms of accuracy, 

efficiency, and its ability to operate on 

resource-constrained edge devices. This 

section provides a detailed comparison with 

other methods, comprehensive evaluation 

metrics, and numerical results to support the 

effectiveness of the proposed approach. 
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 Comparison with other methods: The 

proposed method was compared with 

several state-of-the-art interaction 

recognition methods, including traditional 

computer vision techniques and modern 

deep learning approaches. The key 

comparisons were made based on the 

following criteria: computational efficiency, 

accuracy, and suitability for edge devices. 

 Traditional computer vision 

techniques: Traditional methods often rely 

on handcrafted features and classical 

machine learning algorithms. While these 

methods can be efficient, they typically lack 

the robustness and accuracy of deep learning 

models. Moreover, they often require 

significant computational resources for 

feature extraction and classification. 

 Modern deep learning approaches: 

Modern deep learning methods, such as 

those using Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks 

(RNNs), provide high accuracy in 

interaction recognition tasks. However, these 

models are generally computationally 

intensive and may not be suitable for 

deployment on edge devices due to their 

high resource requirements. The proposed 

method leverages the lightweight MoveNet 

model for pose estimation and a simple 

distance grid for interaction detection, 

offering a balance between accuracy and 

computational efficiency. This makes it 

particularly suitable for real-time 

applications on edge devices. 

Evaluation metrics 

The performance of the proposed 

method was evaluated using several key 

metrics: 

 Accuracy: The percentage of 

correctly identified interactions out of the 

total number of interactions in the dataset. 

 Precision: The ratio of true positive 

interactions to the sum of true positives and 

false positives. 

 Recall: The ratio of true positive 

interactions to the sum of true positives and 

false negatives. 

 F1 Score: The harmonic mean of 

precision and recall, providing a single 

measure of the method’s accuracy. 

 Inference Time: The average time 

taken to process a single frame and detect 

interactions, measured in milliseconds. 

Numerical results 

The proposed method was tested on a PC 

for initial training and validation, and then 

deployed on Android edge devices for real-

time testing. The results are summarized in 

Table 1. 

Table 1. Performance metrics of the 

proposed interaction recognition method 

Metric Value 

Accuracy 65% 

Precision 62% 

Recall 68% 

F1 Score 65% 

Inference Time 30 ms per frame 

The comprehensive evaluation involved both 

qualitative and quantitative assessments: 

 Qualitative assessment: Visual inspection of 

interaction recognition results on test videos 

showed that the method could reliably detect 

common interactions such as handshakes, 

high-fives, and conversations. The visual 
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results, as shown in Figures 2 and 3, 

illustrate the effectiveness of the method in 

real-world scenarios. 

 Quantitative assessment: The numerical 

results indicate that the proposed method 

achieves a good balance between accuracy 

and computational efficiency. The 65% 

accuracy, while not the highest compared to 

some deep learning methods, is acceptable 

given the constraints of edge devices. The 

precision and recall values demonstrate the 

method's ability to minimize false positives 

and false negatives, respectively. 

5. DISCUSSION 

Our proposed methodology presents 

several significant advantages that 

contribute to the advancement of interaction 

recognition systems, particularly in edge 

computing environments. By prioritizing 

lightweight algorithms and efficient 

processing techniques, we've made real-time 

interaction recognition feasible even on 

resource-constrained edge devices. This 

expands the applicability of such systems to 

a wide range of scenarios, from security 

surveillance to smart environments, where 

immediate action is crucial. Additionally, the 

integration of pose estimation with distance 

grid-based proximity analysis enhances the 

system's accuracy and reliability, enabling 

robust detection of interpersonal interactions 

across diverse environmental conditions. 

Our methodology is not without its 

limitations and challenges. One notable 

limitation is the current accuracy of our 

interaction recognition model, which stands 

at approximately 65% due to the relatively 

small training dataset. Addressing this 

limitation requires further data collection 

and augmentation efforts, as well as 

algorithmic enhancements to improve model 

generalization across various interaction 

scenarios. Additionally, while our 

methodology performs well in controlled 

environments, its efficacy in dynamic and 

uncontrolled settings remains to be fully 

explored. Factors such as occlusions, 

variable lighting conditions, and complex 

interaction dynamics pose challenges to 

real-world deployment and necessitate 

ongoing refinement of the system. 

There are several promising avenues for 

future research and development stemming 

from our work. Firstly, efforts to enhance the 

accuracy and robustness of the interaction 

recognition model through expanded 

training datasets, advanced algorithmic 

techniques, and transfer learning approaches 

hold promise for improving system 

performance in real-world scenarios. 

Additionally, the integration of context-

awareness and multimodal sensing 

capabilities could further enrich the 

interaction recognition system, enabling it to 

infer contextual information and adapt its 

behavior accordingly. Exploring novel 

deployment scenarios and application 

domains, such as healthcare monitoring and 

human-robot interaction, can unlock new 

opportunities for leveraging interaction 

recognition in diverse contexts. 

6. CONCLUSION 

Our proposed methodology offers a 

viable solution for enabling efficient 

interaction recognition on edge devices, 

opening new avenues for applications in 

security, surveillance, and beyond. By 

leveraging lightweight algorithms and 

efficient processing techniques, we achieve 

real-time interaction detection while 

minimizing computational overhead. 

Despite certain limitations, such as the 

current accuracy of the interaction 

recognition model and challenges in 

dynamic environments, our approach 

demonstrates significant promise for 
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 practical deployment. Future research 

directions include further optimization of the 

model, exploration of context-awareness 

techniques, and extension to diverse 

application domains. Overall, our work 

represents a crucial step towards harnessing 

the power of edge computing for enhancing 

situational awareness and enabling 

intelligent interaction analysis in real-world 

scenarios. 
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