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1. INTRODUCTION 

With the continuous development of 

society, the application of scientific research 

results to industrial production has become 

extremely important. Neural networks are not 

a new topic and there are many studies and 

applications in this field. However, the 

development of a Neural-PLC (Programmable 

Logic Controller) controller for industry is still 

an essential need in the context of rapidly 

developing industry in Vietnam. Currently, 

Neural-PLC controllers used in some factories 

in Vietnam are mainly copyrighted from the 

manufacturer. Therefore, the goal of the study 

is to apply knowledge of Neural networks 

combined with PLC to design a Neural-PLC 

controller in industry (Topalova & Tzokev, 

2010); Ahmad & Prajitno, 2020). Traditional 

PID controllers are notable for their simple 

structure, easy adjustment, low cost and 

effective response ability (Combaluzier et al., 

2016; Coelho et al., 2020). Meanwhile, 

artificial neural networks can be considered as 

a basic mathematical model of the brain, 

operating as a distributed computing network 

(Golenkov et al., 1992). Unlike traditional 

computers, which need to be programmed to 

perform specific tasks, most neural networks 

require training (Wu & Feng, 2018). They are 

capable of learning new connections, 

functional relationships, and new patterns. 

Neural networks are a fundamental tool for 

developing intelligent systems that can learn. 

One of the outstanding advantages of neural 
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networks is their adaptability. Thanks to the 

ability to automatically adjust weights, neural 

networks can optimize operations such as 

pattern recognition and system control 

decision making. This adaptability allows 

neural networks to maintain operating 

efficiency when the environment and control 

objects change over time (Grossberg, 2013).  

Based on his own practical needs, the 

author chose the research topic of building a 

Neural controller in industry by building 

functions in Siemens controllers. Using the 

SCL language available in SIMATIC (Berger, 

2012), the author studies the algorithms of 

three controllers: PID controller (Al Gizi et al., 

2015), Neural controller (Alber et al., 2019), 

RBF controller (Arora et al., 2014). Each 

controller has different advantages and 

disadvantages. To create different control 

purposes, there are combinations of 

advantages between PID and Neural network 

into the hybrid control method Neural-PID  

(Webb et al., 2011) and similar to the RBF-

PID controller (Ma et al., 2020). In this article, 

the author will present two main controllers, 

the Neural-PID controller and the RBF-PID 

controller to control a real model of a single 

water tank. The measurement results show that 

both controllers operate stably, but the hybrid 

Neural-PID controller gives the best response 

control results, the errors in all cases are small, 

and the overshoot is small. 

2. OBJECTS AND METHODS 

2.1. Research object 

The control object is a single water tank 

model as shown in Figure 1. A single water 

tank is a nonlinear object, the water level 

signal is often fluctuating (with interference), 

so it is easy to simulate. Simatic manager 

programming software is specialized for S7-

300 and S7-400 controllers, combined with 

Omron's E4PA Ultrasonic Sensor, MM420 

inverter and Redlion's industrial screen (Touch 

Screen) to control the speed of the pump into 

the water tank. 

Using the SCL language available in 

Simatic, the author researches two main 

controllers: the Neural-PID controller and the 

RBF-PID controller. Combining the 

advantages of PID and Neural into a hybrid 

Neural-PID control method and combining 

RBF and PID into a hybrid RBF-PID control 

method. The topic uses artificial neural 

network technique combined with traditional 

PID controller to design a controller with good 

output response. 

 

Figure 1. Water tank control model 

2.2. Research method 

The topic uses the experimental method to 

find the optimal controller for the object here 

is a single water tank. The author studies two 

main controllers including the Neural-PID 

controller and the RBF-PID controller. The 

goal is that the controller must be stable, 

sustainable, optimal, at the same time the cost 

of use must be low and must be widely applied 

in life. Experimental results show that the 

hybrid Neural-PID controller controlling a 

single water tank gives quite good results, with 

small errors. 
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3. SYSTEM DESIGN 

3.1. Single water tank model 

Consider a water tank system containing 

liquid with a cross-section that varies with 

height as shown in Figure 2 as follows: 

 

Figure 2. Single Tank Model 

The differential equation describing the 

system is: 

 
(1) 

 
(2) 

In which:  

u(t)–pump control voltage (0 ≤ u(t) ≤ 10V) 

h(t) – liquid level height in the tank (cm) 

A(h) – cross-sectional area of the tank (cm2) 

hmax – maximum height of the tank 

Amax, Amin – maximum and minimum cross-

sectional areas 

k – coefficient proportional to pump capacity 

a – discharge valve cross-sectional area (cm2) 

g – gravitational acceleration (981cm/sec2) 

CD – discharge coefficient 

Parameters of single water tank system are 

as Table 1: 

Table 1. Parameters of single water tank system 

Parameter  Value 

Maximum height, hmax (cm) 50 

Maximum cross section, Amax (cm2) 100 

Minimum cross section, Amin (cm2) 1 

Proportional coefficient to pump 

capacity, k (cm3/sec) 

300 

Exhaust valve cross section, a (cm2) 1 

 Discharge coefficient, CD 0.6 

 The problem is to control the liquid level 

in the tank according to the set signal. From 

the differential equation (1) above we have: 

         

         
(3) 

 Subtracting h(t+1) we get: 

         

 
 

(4) 

Substituting the value of A(h) from 

equation (2) we have: 

 

 
 (5) 

Substituting the values of Amax, Amin, hmax, 

k, CD, a, g, with sampling period t = 1s into 

equation (5), we have: 

 

 

      

(6) 
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The single tank system is a nonlinear 

system. In the simulation run, we will put this 

mathematical equation into the object section. 

When running with the real model, the object 

will be the actual external tank. Here we have 

one output that needs to be controlled, h(t+1) 

and two input variables, u(t) and h(t). 

3.2 Closed-loop numerical control system: 

 

Figure 3. Closed-loop digital control system 

The closed-loop digital control system is 

shown in Figure 3. Through the K (symbolic) 

keys working synchronously, the S7-400 

controller reads the feedback signal from the 

SM431 Module that has received the signal 

from the water level sensor, compares it with 

the signal set from the industrial screen, then 

processes it according to two algorithms 

Neural-PID, RBF-PID and outputs the control 

signal. The control signal is transferred to the 

SM432 analog signal output module to control 

the object. 

3.2.1 Neural-PID controller 

 
 

 

(a) 

 

(b) 

Figure 4. Neural-PID controller: (a) Neural connection diagram, (b) Neural-PID control system 

The Neural-PID controller has the stability 

of the PID controller and the adaptive learning 

of the Neural network (Yu & Rosen, 2013; 

Rossomando & Soria, 2015). The Neural-PID 

controller is a 3-layer feed-forward network: 

an input layer, a hidden layer, and an output 

layer. The input layer has 2 neurons that 

receive signals from e and dt/de. The hidden 

layer has 6 neurons, using a bipolar S-shaped 

activation function. The output layer has 3 

neurons, using a Sigmoid activation function. 

The three outputs are responsible for adjusting 

the 3 parameters KP, KI, KD respectively. All 

neurons are connected together as shown in 

Figure 4(a), 4(b). 

: the input vector consists of 

two neurons that receive signals from e and 

de/dt. 

: output of the q unit of the 

hidden layer with l equal to 6. 

: are the outputs of the output 

layer with n equal to 3. 
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: is the connection 

weight between the input layer and the hidden 

layer. 

 is the connection 

weight between the hidden layer and the 

output layer. 

The weighted sum of the inputs to the qth 

neuron in the hidden layer is: 

 

 
(7) 

The output signal of the qth neuron in the 

hidden layer is: 

 

 

(8) 

The weighted sum of the input signals to 

the ith neuron in the output layer is: 

 

 

 

 (9) 

The output signal of the ith neuron in the 

output layer is: 

 

 
   (10) 

Suppose we have a training dataset 

consisting of K samples (x(k), d(k)),  

The criterion for training the network is to 

minimize the error: 

( 11)   

The function E forms a convex surface in 

space, on which there is a minimum point. 

With any set of weights, we can calculate the 

value of E on the convex surface. 

The program of the Neural-PID controller 

as shown in Figure 4 (b) is written using the 

FC3 function in the SCL language. After 

compiling the SCL program, the FC3 function 

will be created in the Block of the program 

according to the functions from (12) to (17).  

Hidden layer activation function: 

 (12) 

Output layer activation function: 

 (13) 

Control law: 

 (14) 

 (15) 

Discretization: 

 

    

(16) 

 

 

 

(17) 

Combining the advantages of two Neural 

and PID controllers gives us a hybrid Neural-

PID controller, the Neural-PID stabilizer has 
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both the stability of a PID controller and the 

adaptive learning of a Neural controller. The 

weights are updated immediately after each 

input and each output are presented. This 

training method allows the network to learn on-

line while the system is operating. Therefore, 

any new fluctuations that arise in the system are 

updated. The advantage of this training method 

is that the network is more adaptive and stable 

when the system changes over time. The 

disadvantage is that the network is unstable in 

the beginning. 

3.2.2 Design of RBF-PID controller 

The block diagram of the control system is 

similar to Figure 4(b). In which the feed-forward 

Neural controller is replaced by the RBF 

network as follows (Zeng et al., 2012): 

 

Figure 5. RBF controller with three outputs 

The controller uses an RBF neural network 

with nine basis functions in the hidden layer, 

the input sum function of the hidden layer 

neuron is a demand function (Hoori & Motai, 

2017). The output has three neurons to adjust 

three parameters KP, KI, KD. The input sum 

function of the output layer neuron is a linear 

function. The input layer consists of two 

neurons receiving signals from e and de/dt. 

The mathematical equation for transmitting 

signals from the input layer to the output layer 

of the network is: 

- Output of the qth neuron (hidden layer): 

 

 

 

(18) 

(19) 

x: input vector consisting of 2 neurons 

receiving signals from e and de/dt. 

μq: center of qth basis function. 

σq: width of qth basis function. 

Output of ith neuron (output layer): 

 (i=   (20) 

Error function: 

 

(21) 

RBF-PID networks are usually trained in two 

steps: determining the center and width of the 

basis function. Next is training the output layer 

weights. 

4. RESULTS 

4.1 Actual model 

The actual control system diagram is 

shown in Figure 6(a), 6(b). The computer will 

access the industrial screen via TCP/IP address 

to view data, graphs and display report data. 

The 6-inch color industrial screen Touch 

Screen (Redlion) is used to collect, manage 

data, change setting values and draw graphs 

for the control process. The SM431 module is 

used to receive signals from the water level 

sensor and compare them with the signal set 

from the industrial screen. Through CPU 414, 

the central processor of the PLC S7-400 

controller, it is used to write control sub-

functions including Neural-PID function, 

RBF-PID function and output control signals 

through the SM432 module. The SM432 

module is used to output analog signals from 0 
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to 10VDC to control the inverter to change the 

speed of the motor pumping water into the 

tank. The model uses a 3-phase 230VAC water 

pump, 220W capacity, 50HZ. The 3-phase 

230VAC inverter, 0.37KW capacity is used to 

control the water pump to change speed from 

0Hz-50Hz, the output of this signal is decided 

by the S7-400 controller, the inverter is only 

the actuator. The software used is STEP 7 

V5.5, SCL programming for the controller, 

programming the screen with Crimson 3.0 

software. 

 

(a) 

 

(b) 

Figure 6. (a) Actual system (b) Connection diagram 

4.2 Measurement results with the hybrid 

controller NEURAL-PID 

Initially set the setpoint to 125 after setting 

change setpoint to 150, when reaching set 

change setpoint to 100. The steady-state error 

exl is close to 0.5% (this error is caused by 

surface noise, which is acceptable). Figure 7 is 

the result of executing the PID neural 

controller model. At the stage of Setpoint at 

125, the result according to the graph in Figure 

7 shows a relatively large delay. However, the 

slope is straight, not overshooting. When 

changing Setpoint from 125 to 150, the system 

still reacts faster because at this time the 

Neural network has been learned. At the stage 

of changing Setpoint from 150 to 125, there is 

still an error but it is small and acceptable (the 

error is caused by model noise). But after that, 

the system still operates very stably. The 

ability to respond to the changing process of 

the system is good. The parameters 

(connection weights) of the model are trained 

and updated well. The Neural-PID function 

controller combines the stability of PID and 

the adaptive learning of the Neural controller 

for good control results. 

 

Figure 7. Neural-PID control results with changes 

in Setpoint up and down 

4.3 Measurement results with RBF-PID 

hybrid controller 
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Initially set the setpoint to 100, after 

setting, change the setpoint to 150. The 

setpoint error exl is close to 0.5% (this error is 

caused by surface noise, which is acceptable). 

The RBF-PID controller gives the model 

execution results as shown in Figure 8. We see 

that the Setpoint stage at 100 has quite good 

control results but overshoots the first cycle by 

20% and then decreases by 10% in cycle 2. It 

only stabilizes in cycle 3. However, in the 

steady state mode, the disturbance is less. 

When changing the Setpoint from 100 to 150, 

the system still gives an error when changing 

but is still good afterwards. The error of the 

model control process is small and acceptable 

(the error is caused by the model's 

disturbance). The system's ability to respond to 

the changing process is quite good. The 

parameters (connection weights) of the model 

are well trained and updated. The RBF-PID 

controller combines the stability of the PID 

and the adaptive learning of the RBF 

controller, so it gives good control results. 

From the measurement results of the two 

hybrid controllers Neural-PID and RBF-PID in 

Figure 7 and Figure 8, it shows that both 

controllers are moving towards stability. If we 

consider the time to reach stability, the hybrid 

controller Neural-PID gives better response 

than the RBF-PID controller. 

 

Figure 8. RBF-PID control results with Setpoint 

changes 

4. CONCLUSION 

Two types of hybrid controllers Neural-

PID and RBP-PID have been performed in the 

S7-400 system using the SCL programming 

language, and have shown good performance 

in controlling the real model of a single water 

tank. The errors in the test cases are small, 

with the coefficients Kp, Ki, Kd, center and 

width of the basis function determined based 

on the user's experience. The combination of 

two Neural controllers and a PID controller in 

the Neural-PID hybrid controller benefits from 

both technologies: the stability of PID and the 

learning ability of Neural, leading to better 

control results in the two tested methods. The 

advantage of this topic is that the online 

control using the SCL language in the S7-400 

controller has the ability to be used in industry 

and the application to control industrial 

systems is very high. But the limitation of the 

topic is that the language and functions used 

are only written in Siemens S7-300 and S7-

400 controllers. The development direction of 

the topic is to expand these control functions 

to other controllers such as Omron, 

Mitshubisshi, AB, ... and build many other 

functions with higher practicality and 

application scope. 
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