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1. INTRODUCTION 

Cascade reservoir systems play a vital role 

in water resource management and power 

generation, particularly in regions with 

significant hydroelectric potential (Fan et al., 

2015). The optimal scheduling of cascade 

reservoirs is a complex and challenging 

problem (He et al., 2019) due to the nonlinearity 

of the system, multiple operational constraints, 

and the need to balance water release for power 

generation, irrigation, flood control, and 

environmental preservation (Bai et al., 2017). 

Traditional optimization methods such as 

linear, non-linear, network flow, and dynamic 

programming often encounter difficulties in 

efficiently solving the large-scale, multi-

objective optimization problem (Dao et al., 

2022) associated with cascade reservoir 

dispatching (T. Wang et al., 2023). 

In recent years, heuristic optimization 

algorithms have gained attention for their 

ability to address complex optimization 

problems (Sun et al., 2018). However, existing 

algorithms, including the standard Kidney 

Algorithm (KA)(Jaddi et al., 2017), have 

limitations such as low population vitality, slow 

convergence speed, and premature 

convergence, which hinder their effectiveness 

in solving the cascade reservoir dispatching 

problem. The KA is a heuristic optimization 

algorithm inspired by the physiological 

function of kidneys in the human body. It 
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simulates the process of blood filtration and 

reabsorption in the kidneys to develop an 

efficient and effective optimization algorithm 

for solving complex optimization problems 

(Ehteram et al., 2018). The algorithm is 

designed to maintain population diversity, 

adaptability, and vitality, drawing analogies 

from the biological processes of filtration, 

reabsorption, and excretion in the human 

kidneys (Ekinci & Hekimoğlu, 2019). 

Due to the drawbacks of the standard KA 

algorithm such as slow convergence speed, low 

population vitality, and premature 

convergence, this research suggests an 

Improved Kidney Algorithm (IKA) that 

incorporates a migration strategy with a scaling 

factor and an adaptive parameter adjustment 

strategy (Ehteram et al., 2018). The IKA is then 

employed to solve the optimal scheduling of a 

cascade reservoir (Y. Wang et al., 2020) for 

long-term power generation to showcase its 

viability and efficiency.  

The main goals of this study are outlined as 

follows: This paper offers a comprehensive 

explanation of the optimization principle of the 

standard KA algorithm. It presents an IKA that 

tackles the deficiencies of the standard 

algorithm, improving population diversity and 

convergence speed. The IKA is utilized to 

address the optimal scheduling of long-term 

power generation in a cascade reservoir, 

demonstrating its effectiveness in enhancing 

multi-year average power generation and 

decreasing discarded water. By addressing 

these objectives, this research aims to 

contribute to the optimization of cascade 

reservoir dispatching and highlight the potential 

of the IKA in addressing complex optimization 

problems in water resource management and 

power generation. The subsequent sections of 

this paper will delve into the background and 

related work, the optimization principle of the 

standard KA algorithm, the strategies of the 

IKA, its application in cascade reservoir 

dispatching, and conclude with potential future 

research directions. 

2. BACKGROUND AND RELATED 

WORK 

Cascade Reservoir Dispatching 

Cascade reservoir systems are essential for 

managing water resources and generating 

hydropower in regions with abundant water 

sources (Thaeer Hammid et al., 2020). These 

systems consist of multiple interconnected 

reservoirs, each serving various purposes such 

as flood control, irrigation, and power 

generation (Dao, Nguyen, Do, et al., 2023). The 

optimal scheduling of cascade reservoirs 

involves determining the release policies for 

each reservoir over an extended time horizon to 

meet multiple objectives while adhering to 

operational constraints (Suwal et al., 2020). The 

illustration in Figure 1 depicts a cascade 

reservoir system that is connected to the 

management of water resources and the 

production of hydropower, and it has ample 

water sources. 

 

Figure 1. An example of a cascade reservoir 

system with abundant water sources is related 

to managing water resources and generating 

hydropower. 

The complexity of cascade reservoir 

dispatching arises from the need to balance 

conflicting objectives, such as maximizing 

power generation (Asfaw & Saiedi, 2011), 

ensuring water supply for irrigation (Chen et 

al., 2021), and maintaining ecological flow, 

while considering uncertainties in inflow, 

energy prices, and environmental regulations 
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(Lai et al., 2022). Traditional optimization 

methods, including linear programming and 

dynamic programming, face challenges in 

efficiently solving the large-scale, multi-

objective, and non-linear optimization problem 

associated with cascade reservoir dispatching. 

In the long-term power generation dispatch 

model of cascade reservoirs, the best way to use 

them is to use their hydrology and storage 

capacity to make up for differences between 

upstream and downstream reservoirs (Dao, 

Nguyen, Do, et al., 2023). This study’s cascade 

reservoir power generation dispatching model 

aims to achieve the maximum multi-year 

average power generation with guaranteed 

output. According to the upstream water inflow 

and the water in each section during the 

dispatch period, various operation constraints 

and boundary conditions are considered, and 

the cascade reservoirs are optimized by 

optimizing each cascade reservoir. To 

maximize the power generation capacity of the 

cascade reservoirs to satisfy the guaranteed 

output of the cascade as much as possible 

(Yazdi & Moridi, 2018). The objective function 

is formulated for the generation dispatch model 

of cascade reservoirs. Let G represent the 

objective function for the optimal dispatch of 

cascade reservoirs. The maximum average 

outputs of G is computed as the objective 

function for the optimal dispatch problem of 

cascade reservoirs, expressed as follows. 

𝑚𝑎𝑥𝐺 =
1

𝑁
∑ ⍙𝑇(𝑡) ∗𝑇

𝑡=1

(∑ 𝑃(𝑚, 𝑡) − 𝐶𝜑(𝑃𝑓 − ∑ 𝑃(𝑚, 𝑡)𝑀
𝑚=1 )

𝑎𝑀
𝑚=1 ),                             

(1) 

where 𝐺̅ is is the average output amount of 

flowing (e.g., volume flowing water in or out of 

reservoirs);    𝑡 and T are the time and total 

period time number (e.g., 12 month of period 

year cycle); ∆𝑇 (𝑡) and N are calculated period 

(it is calculated, e.g., hours, day, or month) and 

year number during the dispatch period, 

respectively; 𝑚 and 𝑀 are reservoir numbers 

and the total number of reservoirs respectively; 

C, φ, and 𝑎 are the penalty coefficients for the 

setting variables of guaranteed outputs, which 

are all non-negative variables. The objective 

function of the optimization is subject to 

constraints that need to be met, including both 

equality and inequality constraints. The 

constraints consist of both equality and 

inequality constraints, such as Eqs. 2 to 8, that 

must be satisfied as follows. A coefficient of φ 

is calculated as follows.  

𝜑 = {
0,       ∑ 𝑃(𝑚, 𝑡) ≥ 𝑃𝑓

𝑀
𝑖=1  

1,       ∑ 𝑃(𝑚, 𝑡) < 𝑃𝑓
𝑀
𝑖=1  

,              (2) 

where 𝑃(𝑚, 𝑡) is the average output of the m-th 

reservoir during 𝑡 period; 𝑃𝑓 is the guaranteed 

output of cascade reservoirs.  

The equation constraints are the water 

balance equation, the hydraulic connection 

equation, and the boundary conditions; the 

inequality constraints are all non-negative 

constraints on power output, outgoing flow, 

water level (or storage capacity) and variables. 

The relevant mathematical expressions are as 

follows: water balance equation, hydraulic 

connection equation, boundary conditions, 

power output constraint, outbound flow 

restriction, and water level operation 

constraints. The water balance is calculated as 

follows: 

𝑉(𝑚, 𝑡 + 1) = 𝑉(𝑚, 𝑡) + [𝑄𝑖𝑛(𝑚, 𝑡) −
𝑄𝑜𝑢𝑡(𝑚, 𝑡) − 𝐿(𝑚, 𝑡)] ∗ ∆𝑇(𝑡),                         (3) 

where 𝑉(𝑚, 𝑡) and 𝑉(𝑚, 𝑡 + 1) are the average 

storage of the m-th reservoir during t and t+1 

respectively; Qin (m, t), Qout (m, t) and L (m, t) 

are the average inflow, outflow, and loss flow 

including evaporation and seepage of the mth 

reservoir during t period, respectively. The 

hydraulic connection is computed as follows.  

𝑄𝑖𝑛(𝑚 + 1, 𝑡) = 𝑄𝑜𝑢𝑡(𝑚, 𝑡) + 𝑞(𝑚, 𝑡),   (4) 

where 𝑞(𝑚, 𝑡) is the average inflow between 

the m-th reservoir and the m+1th reservoir 

during t period. The initial water level is set by 

the boundary conditions as follows: 

 𝑍(𝑚, 1) = 𝑍𝑏(𝑚),   𝑍(𝑚, 𝑇 + 1) = 𝑍𝑒(𝑚),  (5) 
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where 𝑍(𝑚, 1) and 𝑍(𝑚, 𝑇 +  1) are the initial 

water level [𝑍𝑏(𝑚)] and the end water level 

[𝑍𝑒(𝑚)] of the m-th reservoir operation. The 

inequality constraints are all non-negative 

constraints, as follows: Power output 

constraints: 

𝑃𝑚𝑖𝑛(𝑚, 𝑡) ≤ 𝑃(𝑚, 𝑡) ≤ 𝑃𝑚𝑎𝑥(𝑚, 𝑡),    (6) 

where 𝑃𝑚𝑖𝑛(𝑚, 𝑡) and 𝑃𝑚𝑎𝑥(𝑚, 𝑡) are the lower 

and upper limits of the average output of the m-

th reservoir during t period. The outbound flow 

restriction is set as follows. 

𝑄𝑜𝑚𝑖𝑛(𝑚, 𝑡) ≤ 𝑄𝑜𝑢𝑡(𝑚, 𝑡) ≤ 𝑄𝑜𝑚𝑎𝑥(𝑚, 𝑡),  (7) 

where 𝑄𝑜𝑚𝑖𝑛(𝑚, 𝑡) and 𝑄𝑜𝑚𝑎𝑥(𝑚, 𝑡) are the 

lower and upper limits of the m-th reservoir’s 

discharge flow during t period. The water level 

operation constraint is set under the following 

equation: 

𝑍𝑚𝑖𝑛(𝑚, 𝑡) ≤ 𝑍(𝑚, 𝑡) ≤ 𝑍𝑚𝑎𝑥(𝑚, 𝑡),          (8) 

where 𝑍𝑚𝑖𝑛(𝑚, 𝑡) and 𝑍𝑚𝑎𝑥(𝑚, 𝑡) are the lower 

limit and upper limit of the water level during t 

period of the mth reservoir, respectively. 

3. IMPROVED KIDNEY ALGORITHM  

Before going into more detail about 

proposing an Improved Kidney Algorithm 

(IKA) with strategies such as adaptive filtration 

threshold mechanisms and diversity 

maintenance, we will review the KA algorithm 

and its optimization principle. 

3.1 The Kidney Algorithm and its 

Optimization Principle 

The KA was introduced by Jaddi in 2017 

(Jaddi et al., 2017) as a natural heuristic 

optimization algorithm inspired by the 

physiological mechanism of the human kidney, 

specifically its processes of filtration, 

reabsorption, secretion, and excretion of blood 

and urine. This algorithm is recognized for its 

robustness and strong optimization capabilities, 

achieved through minimal parameterization, 

including a single filter rate parameter, along 

with common heuristic algorithm parameters 

such as population size and maximum number 

of iterations. The KA’s simplicity and ability to 

generate new individuals based on current and 

optimal solutions enable excellent global search 

capabilities. The optimization principle of the 

KA can be outlined as follows. 

Filtration: In this phase, a diverse population of 

candidate solutions, referred to as individuals or 

"nephrons," is generated and evaluated based 

on their fitness concerning the problem 

objectives and constraints. 

Reabsorption: The algorithm selects the fittest 

individuals, akin to the reabsorption of essential 

kidney substances, to be retained in the 

population for further exploration and 

exploitation. 

Excretion: Less fit individuals are eliminated 

from the population to maintain diversity and 

prevent premature convergence, mirroring the 

excretion process in the kidneys. 

The optimization principle of the KA can be 

further summarized as follows: 

Step 1 Initialization: The algorithm 

initializes a diverse population of candidate 

solutions, often represented as a set of 

chromosomes or vectors, to form the initial 

population of nephrons. The population 

initialization starts by randomly initializing a 

population of agents, known as population size 

Np, within the search space boundaries [𝑈𝑏𝑖, 

𝐿𝑏𝑖]. Each bat is assigned a position and a 

frequency. Let S be a vector representing the 

solution, with consideration as the decision 

variable starting at an initial position expressed 

as follows. 

𝑆𝑖 = 𝐿𝑏𝑖 + 𝑟𝑎𝑛𝑑() ∙ (𝑈𝑏𝑖 − 𝐿𝑏𝑖),        (9) 

where 𝑆𝑖 denotes the solute of the individual i 

at the current iteration t, which is considered the 

candidate solution for the optimal algorithm.;  

𝑈𝑏𝑖 and 𝐿𝑏𝑖 are the upper and lower boundaries 

of the solution space for a decision variable, 

where i is the index of the decision variable, and 

𝑟𝑎𝑛𝑑() is a variable random with a value range 

∈ [0,1] in the normal distribution.   

Step 2- Fitness Evaluation: After the initial 

population generated, we calculate the 
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objective function values of all individuals in 

the population, and use the individual with the 

largest objective function value as the currently 

discovered optimal solution 𝑆best. Set KA 

parameter values, e.g., filter rate parameter α 

and maximum number of iterations Imax. Each 

individual in the population is evaluated based 

on its fitness with respect to the optimization 

objectives and constraints, typically involving 

assessing its performance in the context of the 

specific optimization problem. 

Step 3-Filtration: The algorithm selects 

individuals from the population based on their 

fitness, aiming to maintain a diverse set of 

potential solutions for further exploration. For 

the i-th iteration (i≥ 1), a new solute 

(individual) is generated by simulating the 

movement of the current solute individual to the 

optimal solution. The calculation formula for 

solute transport is as follows: 

𝑆𝑖 = 𝑆𝑖−1 + 𝑟𝑎𝑛𝑑() ∙ (𝑆𝑏𝑒𝑠𝑡 − 𝑆𝑖−1),   (10) 

where 𝑆𝑖−1 and 𝑆𝑖 are the solutes (solutions) in 

the i-1th and i-th iterations respectively; 

r𝑎𝑛𝑑 () is a uniformly distributed random 

number generator. The real number of the 

interval. Filtration operation is used to calculate 

the filtration rate value 𝑓𝑟 filter the solute in the 

population, and the filtered solute will be 

divided into blood (FB) and urine liquid (W). 

𝑓𝑟 = 𝛼 ∙
∑ 𝑓(𝑆𝑗)

𝑁𝑝
𝑗=1

𝑁𝑝
,                     (11) 

where 𝑓𝑟 is the filtering rate; 𝑓(𝑆𝑗) is the 

objective function value of the j-th solute S in 

the population; the filtering parameter α is a real 

number located in [0,1].  

Step 4-Reabsorption: it is the process in 

which the fittest individuals are retained in the 

population for subsequent iterations, ensuring a 

focus on exploiting the most promising regions 

of the search space. The reabsorption operation 

calculates the objective function value of all 

solutes in the urine stock solution W. Solutes 

with larger objective function values will be 

reabsorbed by blood FB, and solutes with 

smaller objective function values or outsides of 

limitation boundaries (𝐹𝐵𝑚𝑎𝑥 and 𝐹𝐵𝑚𝑖𝑛) will 

be excreted and go out. 

𝐹𝐵(𝑡) = 𝐹𝐵𝑚𝑎𝑥 × 𝑓𝑟 × cos (
𝜋

2
×

𝑡−1

𝑇𝑚𝑎𝑥
) + 𝐹𝐵𝑚𝑖𝑛, 

(12) 

where 𝐹𝐵𝑚𝑎𝑥 and 𝐹𝐵𝑚𝑖𝑛 are maximun and 

minimun of the flood flow; Tmax is a maximum 

number of iterations; t is current time; 𝐹𝐵 is the 

flood flow. 

Step 5-Secretion operation: adjustment 

with the objective function value of the solute 

reabsorbed by FB and the solute in urine. A 

secreted solute is calculated as follows. 

𝑊(𝑡) = 𝑊𝑚𝑎𝑥 × 𝑒𝑥𝑝
(

ln(
𝑊𝑚𝑖𝑛
𝑊𝑚𝑎𝑥

)

𝑇𝑚𝑎𝑥
)×𝑡

,    (13) 

where 𝑊max and 𝑊min are the max and min 

adjusted ranges, respectively; t is the current 

iteration and Tmax is the maximum iteration 

number. 

Step 6-Excretion operation: For 

individuals in the original urine, if they cannot 

become individuals in the blood after re-

collection and filtration operations, they will be 

excreted. Then, the individuals in the blood are 

sorted according to the objective function 

value, and the optimal individual Sbest is 

updated. Combine blood F solutes (solutions)B 

and original urine W, update the filtration rate 

value fr, and enter the next iteration: i=i+1. A 

generated new solute in the population as a 

solution set. The decision variables of the 

solution vector is expressed as follows. 

𝑆𝑛𝑒𝑤(𝑖) =

{
𝑆(𝑖) + 𝑟𝑎𝑛𝑑(0,1) × 𝑊, 𝑖𝑓(𝑟𝑎𝑛𝑑(0,1) < 𝐹𝐵)

𝑆(𝑖)                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

(14) 

where 𝑆𝑛𝑒𝑤 is a new solute (solution) 

population, i-th index; 𝑟𝑎𝑛𝑑(0,1) is a random 

number arange of ∈[0,1]. 

Step 7-Iterative Refinement: The algorithm 

iteratively performs filtration, reabsorption, and 

excretion steps over multiple generations to 

improve the quality of solutions and converge 
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towards optimal or near-optimal solutions. 

Determine whether the calculation meets the 

termination principle (the maximum number of 

iterations or the objective function value of the 

optimal solution for consecutive iterations 

remains unchanged); if yes, output the 

optimization result; otherwise, repeat steps (2) 

to (6). 

The KA’s optimization principle is guided 

by the principles of population diversity, 

adaptability, and vitality, drawing inspiration 

from the biological processes of kidney 

function. The algorithm’s ability to maintain a 

diverse population and adapt to changing 

environmental conditions makes it suitable for 

addressing complex optimization problems, 

including cascade reservoir dispatching. In the 

subsequent section, the research paper will 

introduce the Improved KA (IKA), which 

builds upon the principles of the standard KA 

to address its limitations and enhance its 

effectiveness in solving complex optimization 

problems such as cascade reservoir dispatching. 

3.2. Improved Kidney Algorithm (IKA) 

The IKA is an enhanced version of the KA 

(Jaddi et al., 2017) that incorporates novel 

strategies to address the limitations of 

traditional heuristic optimization algorithms 

and improve its effectiveness in solving 

complex, non-linear, and multi-objective 

optimization problems. The IKA builds upon 

the principles of the standard KA while 

introducing innovative mechanisms to enhance 

population diversity, convergence speed, and 

solution quality. 

Strategies: The IKA employs several key 

strategies to overcome the limitations of 

traditional heuristic optimization algorithms 

and enhance its performance in solving 

complex optimization problems. The following 

strategies are integral to the IKA's approach: 

Adaptive Filtration Threshold: The IKA 

introduces an adaptive filtration threshold 

mechanism to dynamically adjust the selection 

criteria for individuals during the filtration 

phase. This adaptive threshold allows the 

algorithm to maintain population diversity 

while focusing on exploring promising regions 

of the search space. 

Dynamic Excretion Mechanism: The IKA 

incorporates dynamic excretion mechanisms to 

intelligently eliminate less fit individuals from 

the population, thereby preventing stagnation 

and facilitating the exploration of new solution 

regions. The initial solution set is constructed 

using the uniform design method for the 

dynamic nature of the excretion process, which 

contributes to maintaining population vitality 

and adaptability. The population size increases 

the diversity of the early solutions by 

generating initial solution workable as follows. 

𝑆(𝑖)

= {
𝑆𝑟(𝑖),                          𝑖𝑓( 𝑟𝑎𝑛𝑑(0,1) < 𝑃𝑅)

𝑆𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1) × (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(15) 

where 𝑆(𝑖) is the newly generated solute; 𝑆𝑟(𝑖) 

is any one in the initial solutes; PR is the 

variable of probability value referring to the 

individual body’s immune system (in the 

experiment, it is a specific value set to 1/2); 

𝑟𝑎𝑛𝑑() is the random number ∈[0,1]; 𝑆𝑚𝑎𝑥 and 

𝑆𝑚𝑖𝑛 are the upper and lower limits of the body 

solutes bank, respectively. A selected S(𝑖) from 

the current body memory that needs to be fine-

tuned by adjusting the immune system. 

Adaptive Parameter Control: The IKA 

employs adaptive parameter control 

mechanisms to dynamically adjust algorithmic 

parameters based on the evolving 

characteristics of the optimization landscape. 

This adaptability allows the algorithm to 

respond effectively to changes in the problem 

space and environmental conditions. The 

discrete decision variables of the solution 

vector converted from continuous decision 

variables are expressed as follows. The 

enhancement ensures the algorithm exploits the 

most promising solutions while adapting to 

changing environmental conditions. 
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𝑆𝑛𝑒𝑤(𝑖)

= {
𝑆(𝑖 + 𝑘),       𝑟𝑎𝑛𝑑(0,1) < 𝐹𝐵

𝑆(𝑖),                           𝑒𝑙𝑠𝑒
 

   

(16) 

The objective function 𝑂𝑓(. ) for each solute 

and updating the solute with the updated 

criterion is the greedy criterion. That is, if 

𝑂𝑓𝑛𝑒𝑤 > 𝑂𝑓(𝑆𝑖), the new harmony 𝑆𝑛𝑒𝑤 

replaces the solutes 𝑆𝑖; otherwise, it remains the 

unchanged solution. 

Multi-objective optimization can be 

implemented in other multi-objective 

optimization problems, the IKA incorporates 

mechanisms to handle conflicting objectives 

and constraints. By integrating multi-objective 

optimization techniques, the algorithm can 

effectively balance trade-offs and generate 

Pareto-optimal solutions. The paper currently 

focuses on a single function. 

The reservoir water level at the end of the 

period is calculated as follows: 

𝑆(𝑖, 𝑛) = 𝑆𝑚𝑖𝑛(𝑖, 𝑛) + 𝜆 ∗ [𝑆𝑚𝑎𝑥(𝑖, 𝑛) −
𝑆𝑚𝑖𝑛(𝑖, 𝑛)]                                                     

(17) 

where 𝑆(𝑖, 𝑛) is the reservoir water level of the 

i-th solute in the interval number; 𝑆𝑚𝑖𝑛(𝑖, 𝑛) 

and 𝑆𝑚𝑎𝑥(𝑖, 𝑛) are the lowest and highest 

possible reservoir water levels of the i-th solute 

during the nth period, respectively  j-th is the 

solute number, 𝜆 is a random number uniformly 

distributed between [0,1]. 

By integrating these strategies, the IKA 

aims to address the limitations of traditional 

heuristic optimization algorithms and provide a 

practical framework for solving complex 

optimization problems, including cascade 

reservoir dispatching. The subsequent sections 

of this research paper will present the 

application of the IKA in the context of cascade 

reservoir dispatching and demonstrate its 

effectiveness in optimizing reservoir operations 

under diverse and conflicting objectives and 

constraints. 

4. APPLICATION OF IKA IN CASCADE 

RESERVOIR DISPATCHING 

This section presents an application of the 

IKA for cascade reservoir dispatching, which 

represents a significant advancement in 

addressing the complex and multi-objective 

nature of optimizing the operation of 

interconnected reservoirs. Cascade reservoir 

systems involve a series of interconnected 

reservoirs where the release decisions from one 

reservoir impact the downstream reservoirs, 

posing challenges related to water allocation, 

hydropower generation, flood control, and 

environmental considerations.  

The IKA offers a promising approach to 

optimizing the operation of cascade reservoirs 

effectively while balancing conflicting 

objectives and constraints. 

4.1 The IKA for Cascade Reservoir 

Dispatching 

The nature of cascade reservoir dispatching 

can be addressed by applying IKA, where 

conflicting objectives such as maximizing 

hydropower generation, ensuring water supply, 

and mitigating flood risk need to be balanced. 

Cascade reservoir dispatching involves 

intricate operational constraints related to 

reservoir storage capacities, minimum and 

maximum release limits, environmental flow 

requirements, and downstream water demands. 

The IKA’s ability to handle complex 

constraints and trade-offs through adaptive 

parameter control and dynamic excretion 

mechanisms makes it well-suited for addressing 

the operational complexities of cascade 

reservoir systems.   

The IKA’s emphasis on maintaining 

population diversity with local search 

techniques enables it to explore various 

operating strategies for cascade reservoirs. The 

exploration is essential for identifying non-

dominated solutions representing the best trade-

offs between conflicting objectives and 

providing decision-makers with valuable 
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insights into the range of feasible operating 

policies. 

Cascade reservoir systems are subject to 

variations in inflow patterns, energy market 

dynamics, and environmental regulations. The 

IKA's adaptability to changing conditions, 

facilitated by adaptive filtration thresholds and 

reabsorption mechanisms, ensures that the 

algorithm can continuously adjust its solutions 

to reflect evolving operational and 

environmental contexts. Figure 2 presents a 

simplified illustration of how a chain of chosen 

reservoirs are connected.  

Assumedly, a cascade reservoir system 

includes three stations responding with three 

reservoirs (namely stations 01, 02, and 03) 

arranged in a series (01 -> 2 -> 3).  

Let 𝐼𝑖 be the water inflow, with each reservoir 

receiving water from the main river and 

supplementary sources (i = 1, 2, and 3).  

Let 𝑅𝑖 be the water outflow, with each reservoir 

discharging water with 𝑂1,  𝑂2 and 𝑂3 into the 

main river downstream.  

 

Figure 2. A simplified illustration of a chain of 

connected reservoirs as stations 01, 02, and 03. 

The IKA’s iterative refinement process 

allows for the generation of a diverse set of 

high-quality solutions, which can be evaluated 

using performance metrics such as hydropower 

generation, reservoir storage levels, and 

environmental impact. These solutions can then 

serve as a basis for decision support, enabling 

stakeholders to make informed decisions 

regarding reservoir operation. By applying the 

IKA to the domain of cascade reservoir 

dispatching, researchers and practitioners can 

benefit from a robust and adaptive optimization 

framework capable of addressing the 

complexities and trade-offs inherent in 

managing interconnected reservoir systems.  

The multi-year average power generation 

of cascade reservoirs, the multi-year average 

water discarded and the multi-year average 

power generation guarantee rate are used to 

comprehensively evaluate the effect of the 

heuristic algorithm for optimizing power 

generation dispatching. Each reservoir has no 

water supply task and only has a single power 

generation function, and the evaporation and 

leakage losses of the reservoir are not included 

in the amount of discarded water. Referring to 

Eq. (1), a calculation formula for the average 

amount of water discarded annually is 

computed as follows. 

𝑆 =
1

𝑁
∑ ∑ [𝑄𝑖𝑛(𝑚, 𝑡) − 𝐿(𝑚, 𝑡) −𝑀

𝑚=1
𝑇
𝑡=1

𝑄𝑓𝑑(𝑚, 𝑡)],                                        (18) 

where 𝑆 the multi-year average water 

discarded; 𝑄𝑖𝑛(𝑚, 𝑡), 𝑄𝑓𝑑(𝑚, 𝑡), and  𝐿(𝑚, 𝑡) 

are respectively the average inflow, outflow, 

and loss flow  the power generation flow and 

power generation head of the m-th reservoir 

during the t period; including evaporation and 

seepage of the mth reservoir during t period, 

respectively.  𝑇 and 𝑀 are the total number of 

periods in the dispatch time, and cascade 

reservoirs composed of reservoirs, respectively. 

 𝑄𝑓𝑑(𝑚, 𝑡) =
𝑃(𝑚,𝑡)

𝐾∗𝐻(𝑚,𝑡)
,                       (19) 

where 𝑃(𝑚, 𝑡) is the average output of the m-th 

reservoir during 𝑡 period; 𝐻(𝑚, 𝑡) is power 

generation head  𝑃𝑓 is the guaranteed output of 

cascade reservoirs; K is the unit's 

comprehensive output coefficient.  The year 

average power generation guarantee rate is 

expressed as follows. 

𝑅 =
1

𝑁

∑ 𝑅𝑡
𝑇
𝑡=1

𝑇
× 100%,            (20) 

where 𝑅 is average power generation guarantee 

rate;  𝑅𝑡 is the output statistical variable of the 

cascade reservoir is calculated as follows. 
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𝑅𝑡 = {
1      ∑ 𝑃(𝑚, 𝑡) ≥ 𝑃𝑓

𝑀
𝑖=1

0      ∑ 𝑃(𝑚, 𝑡) < 𝑃𝑓
𝑀
𝑖=1

,      (21) 

where 𝑅𝑡 is the guaranteed output statistical 

variable of the cascade reservoir during the t 

period. The IKA algorithm is used to solve a 

long-term power generation optimization 

problem in the simulation that involves cascade 

reservoirs made up of M reservoirs. The 

optimization goal is to maximize power 

generation, with the optimization variable 

being the end of the period reservoir water 

level, Considering that the total number of 

periods in the dispatch period is T, each of the 

populations The total number of solutes 

possessing optimization variables and the 

population of each iteration contain 

optimization variables. The solution steps are 

described as follows: 

Step1-Initialize the population: Taking the 

reservoir water level at the end of the period as 

the optimization variable, the reservoir water 

level sequence composed of 𝑀 reservoirs is 

regarded as an individual solute (solution), 

using real number coding to optimize the 

variable (reservoir water at the end of the period 

T), and according to the equality and inequality 

constraints that the reservoir needs to meet Eqs 

(2)~(8), generate the initial population whose 

population size is 𝑁𝑝.  

Step2-Evaluation of reservoir water level 

sequence: The objective function value is used 

to evaluate the reservoir water level sequence at 

the end of the period, and the best individual 

Sbest is selected based on this evaluation. In 

this study, the mathematical model represents a 

constrained maximum value optimization 

problem, and the IKA algorithm aims to evolve 

towards the maximum value. Therefore, the 

power generation of cascade reservoirs (where 

larger values are better) is used to assess the 

reservoir water level sequence at the end of the 

period in the IKA algorithm Eq.(18). 

Step3: Divide the population. Randomly 

generate a filtering rate value between [0, 1], 

and calculate the filtering rate value fr, perform 

the filtering operation, and divide the initial 

population into blood 𝐹𝐵 as in Eq.(12) and 

urine 𝑊 as in Eq.(13). 

Step4: Update blood  and urine stock Re-

absorption, secretion and excretion operations 

are used to update blood  and urine stock; then 

according to the selected optimal time-end 

reservoir water level sequence Sbest and the 

segmented population. The migration strategy 

of the scaling factor is updated for all 

individuals Eqs. (14). 

Step5: Update the filtration rate value 𝑓𝑟, and 

then combine the blood and the original urine. 

First, update the filter rate value 𝑓𝑟 according 

to the adaptive parameter adjustment strategy, 

and then merge the blood and the original 

urineto enter the next iteration, Eq.(11). 

Step6: Determine whether the calculation meets 

the termination principle. If the calculation 

reaches the maximum number of iterations, 

e.g., max_iter or the objective function value of 

the optimal solution for 500 consecutive 

iterations does not change, output the 

scheduling result (power generation, end-of-

period reservoir water level, outbound flow, 

average output of the period, etc.), otherwise 

repeat at step 2. 

4.2 Case of Scenario and Its Results  

The objective of optimal operation for the 

three reservoirs’ total annual power generation 

is calculated using Eq. (18). The selected 

system, with three pools, operates monthly, 

spanning from January to December. The 12-

month cycle is detailed in Table 1, outlining 

specific reservoir parameters. The optimization 

variable is the water level, with the total power 

generation of the three power stations serving 

as the objective function. Algorithm 1 

illustrates the pseudocode of the IKA process 

for the optimal operation of depatching cascade 

stations. The operation of the three reservoirs is 

scheduled for intervals, such as a monthly 

schedule covering a full year. The optimization 

goal is to achieve the maximum value of the 

total power generation from the three reservoirs 
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over one year. Various scenarios, including 

typical rainy years, specific average years, and 

typical dry years, are selected to test the 

proposed scheme for optimal operation using 

the applied IKA. Eq. (18), which sums the 

power generation of the hydropower stations as 

determined through the optimization of the 

suggested scheme, serves as the objective 

function for the optimization. 

Algorithm 1. Improved Kidney Algorithm 

Pseudocode for Cascade Reservoir Dispatching 

1. Initialization: population size 𝑁𝑝, maximum 

iterations max_iter, fitness function 𝑂𝑓 

Initialize population with random solutions S as 

Eqs.(9), (15) with equality and inequality 

constraints Eqs (2)~(8) and (19)~(21) 

2. Main loop: 

• For each iteration (iter) from 1 to max_iter: 

o Fitness evaluation: 

▪ Calculate the fitness of each solution: 

𝑂𝑓(𝑆) as Eq. (18) 

o Filtration: 

▪ Calculate filtration rate based on average 

population fitness. 

▪ Select promising solutions based on fitness 

and filtration rate 

(forming filtered_population). Eq. (16) 

o Reabsorption: 

▪ Apply a small random perturbation to 

improve each solution 

in filtered_population Eqs.(12), (21) 

o Secretion: 

▪ Generate new solutions randomly to 

complete the population size. Eq.(18) 

o Combine populations: 

▪ Concatenate filtered_population with the 

newly generated solutions 

(forming combined_population) as Eq.(13) 

o Excretion: 

▪ Sort combined_population by decreasing 

fitness. 

▪ Remove the worst solutions to maintain the 

original population size (keeping the 

top N solutions). 

o Update best solution: 

▪ Keep track of the solution with the highest 

fitness throughout the iterations 

(best_solution). Eq.(14) 

o Save results: 

▪ Store information like iteration number, 

best solution, and best fitness for analysis. 

3. Post-processing: 

• Ooutput optimal results and perform 

maping additional tasks as needed in 

paramters of reservoirs. 

When IKA with reservoir dispatching is 

used, the results are compared with those from 

other schemes, such as the Genetic algorithm 

(GA) (Asfaw & Saiedi, 2011), Firefly 

algorithm (FA) (Chen et al., 2021), Simulated 

annealing (SA) (Azizipour et al., 2020), Particle 

swarm optimization (PSO) (Bai et al., 2017), 

and KA (Ehteram et al., 2018) algorithms for 

the operation plant stations. As with the 

compared schemes, the experiment 

environment system parameters are set up with 

the same conditions as the IKA scheme. For 

example, the number of search solutes is set to 

100, the total number of iterations is set to 500, 

and the number of runs for each algorithm is set 

to 25. The IKA obtained statistical data 

compared with the other schemes, e.g., the GA 

(Asfaw & Saiedi, 2011), FA (Chen et al., 2021), 

SA (Azizipour et al., 2020), PSO (Bai et al., 

2017), and KA (Ehteram et al., 2018)(Jaddi et 

al., 2017), to manage operation problems at the 

cascade reservoir stations. The obtained 

statistical data consist of the best value, worst 

value, average value, and standard deviation of 

the run results in different typical years. The 

scenario of varying water levels depends on the 

specific years that comprise the rainy year, the 

average year, and the dry year. 

Table 1: A fundamental cascade hydropower 

station parameter setting specifications 
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Parameters Station-01 Station-02 Station-03 

Operations: Annual 

regulations  
Annuals 

Unfinish

ed-

annuals 

Annuals 

Reservoir’s storage 

capacity (Bm2) 
34.165 7.752 1.943 

Water normally 

leveled 
715 612.2 511.26 

Water limited 

leveled  
613.8 617.8 552.7 

Outcome 

coefficients of 

outflow Ri 

5.675 4.5925 4.675 

Coefficients water 

inflow Ii  
4.857 3.235 3.275 

Storage limited 

capacity (Bm2) 
1.0105 0.352 0.024 

Setting up capacity 

(MW) 
340 412.55 290 

Storage capacity 

regulations (Bm2) 
21.4055 4.7005 0.9612 

A basic set of parameter settings for a 

cascade hydropower station is provided in 

Table 1. Figure 3 compares the bar chart results 

of the IKA with the KA algorithm for power 

generation capacity. The observed result shows 

that the IKA produces better performance at 

most planning monthly periods in an annual 

year. 

 

Figure 3. A comparison of performance 

results of the IKA with the KA algorithm for 

power generation capacity in planning 

monthly periods annually. 

Specifically, the IKA algorithm 

consistently outperforms the KA algorithm in 

power generation capacity across all 12 months 

of the year. This suggests that the IKA 

algorithm is more effective in optimizing power 

generation capacity and can lead to greater 

efficiency and cost savings for power 

generation facilities. Further analysis of the 

data may provide insights into the specific 

factors that contribute to the superior 

performance of the IKA algorithm, which could 

be valuable for informing future planning and 

decision-making in the power generation 

industry.  

Overall, these findings highlight the 

potential benefits of utilizing the IKA algorithm 

for power generation capacity planning. Table 

2 provides a comprehensive analysis of the 

performance of the IKA, GA, SA, FA, PSO, 

and KA in the optimization of dispatching 

cascade hydropower station management. This 

table delves into a head-to-head comparison of 

IKA’s performance against commonly used 

algorithms in comparing variables, e.g., best,  

standard deviation (Std.), and average (Mse.) 

values across 25 runs in different water years, 

e.g., rainy, normal, and dry year seasons, 

reveals the strengths and weaknesses of each 

approach.  

The table presents the statistical results 

from 25 independent runs, each consisting of 

500 iterations with 100 search agents (solutes) 

per algorithm. By comparing the best, worst, 

average, and standard deviation values across 

different water scenarios (rainy, normal, and 

dry year seasons). 

 Table 2 offers valuable insights into the 

effectiveness of each optimization strategy. 

This analysis serves to identify the most 

suitable approach for optimizing cascade 

hydropower station management under varying 

water conditions. 
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Figures 4 and 5 illustrate how the IKA 

algorithm optimizes dispatching reservoir 

station operation compared to other common 

methods like GA, SA, FA, PSO, and KA. The 

figure highlights the IKA’s performance under 

different water levels in rainy and dry years. 

 

Table 2. A comprehensive analysis of the performance of the IKA with the GA, SA, FA, PSO, 

and KA for the optimization of dispatching cascade reservoirs management 

Years seasons Methods Best Std. Mse. 

Rainy season 

GA 57.77 51.28 49.67 

FA 56.95 49.96 48.68 

SA 56.02 49.61 48.31 

PSO 57.77 51.28 50.42 

KA 57.21 50.70 49.67 

IKA 58.02 51.57 50.64 

Normal Season 

GA 47.41 42.03 56.70 

FA 47.31 41.58 54.55 

SA 46.34 40.99 54.74 

PSO 47.97 42.60 56.70 

KA 47.4 42.03 55.95 

IKA 48.09 42.75 57.10 

Dry Season 

GA 39.85 36.28 41.90 

FA 39.95 36.95 41.95 

SA 39.65 36.96 41.39 

PSO 40.47 37.82 43.44 

KA 38.13 35.43 40.91 

IKA 40.59 37.99 43.70 

 

Figure 4. The comparison of graph curves of the obtained optimal result for power 

generation in a rainy season. 
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Figure 5. The comparison of graph curves of the obtained optimal result for power 

generation in a rainy season. 

The IKA algorithm is particularly effective 

in managing the operation of reservoir stations 

across varying water levels and weather 

conditions. The comparison with other 

common optimization methods such as GA, 

SA, FA, PSO, and KA further emphasizes the 

superiority of the IKA algorithm in this specific 

application. The results presented in Figures 4 

and 5 underscore the potential of the IKA 

algorithm to enhance the efficiency and 

effectiveness of reservoir station operations, 

particularly in the face of changing 

environmental conditions. These findings could 

have significant implications for the 

management and planning of water resource 

systems, particularly in regions prone to 

fluctuating water levels due to seasonal 

variations. Overall, the information in these 

figures supports the idea that the IKA algorithm 

is a useful scheme for improving the scheduling 

of operations at reservoir stations, which could 

lead to better use of resources and better 

operational performance. 

5. CONCLUSION 

This study presented the Improved Kidney 

Algorithm (IKA), a promising solution for 

addressing the intricate challenges associated 

with optimizing the operation of dispatching 

cascade reservoirs. By incorporating adaptive 

mechanisms such as reabsorption, constructing 

an initialized solution set, and adaptive 

parameter control with local search techniques, 

the IKA effectively manages conflicting 

objectives and constraints while exploring 

diverse operating strategies. Its adaptability to 

changing conditions and ability to handle 

complex operational constraints make it well-

suited for real-world applications in water 

resources management. The simulations 

presented in the study demonstrate the 

effectiveness of the IKA in optimizing cascade 

reservoir operations under diverse and 

conflicting objectives and constraints. The 

algorithm’s capacity to generate optimal 

solutions and offer decision support based on 

performance metrics such as hydropower 

generation and reservoir storage levels 

underscores its potential for real-world 

applications. 

Future work in this area could further 

enhance the IKA’s performance by integrating 

additional adaptive mechanisms and exploring 

its applicability to other domains such as flood 

control, water supply management, and 

environmental conservation (T. T. Nguyen et 

al., 2019)(T.-T. Nguyen et al., 2023). 
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Additionally, research could investigate the 

potential for integrating machine learning 

techniques with the IKA to improve its 

adaptability and decision-making capabilities 

(Dao, Nguyen, Ngo, et al., 2023). 
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điện là một nhiệm vụ tương đối phức tạp trên cơ sở tối ưu một 

loạt các tham số. Bài báo này, chúng tôi giới thiệu một thuật toán 

cải tiến( Improved Kidney Algorithm – IKA) để khắc phục những 
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TỪ KHOÁ 

hạn chế của phương pháp tối ưu truyền thống và các thuật toán 

heuristic. Các phương pháp tối ưu hóa truyền thống thường hội 

tụ chậm và chi phí tính toán cao, các thuật toán heuristic tự nhiên 

có thể gặp phải tình trạng hội tụ sớm và có thể chỉ giải được dưới 

mức tối ưu cần thiết. Để cải thiện hiệu quả tối ưu hóa, chúng tôi 

đề xuất IKA kết hợp chiến lược di trú với giải pháp ban đầu về 

hệ số tỷ lệ và cơ chế điều chỉnh tham số thích ứng. Sau đó ứng 

dụng đề xuất vào việc lập lịch điều phối cho hồ phân cấp để điều 

tiết lượng xả nước cho đập thủy điện dài hạn của hồ chứa. Kết 

quả mô phỏng cho thấy sự cải thiện đáng kể trong việc sản xuất 

điện trung bình trong năm và giảm lượng nước xả tổn hao. Điều 

này cho thấy tiềm năng của việc áp dụng giải thuật tối ưu mới 

trong việc giải quyết các vấn đề tối ưu hóa của bài toán lập kế 

hoạch và điều phối phức tạp. 

Quản lý hồ đập thủy điện;  

Điều phối mức nước hồ chứa;  

Thuật toán IKA;  

Thuật toán tối ưu.  

 


