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GENERAL INFORMATION ABSTRACT  

Received date: 30/03/2024  Severe air pollution in Vietnam's tourism areas has become a 

significant economic issue in recent years. While many 

studies have found a link between population exposure to air 

pollution and poor health outcomes, short-term exposure to 

air pollutants in high-pollution zones can result in acute 

health consequences; thus, poor air quality jeopardizes 

visitors' health and well-being and threatens the tourism 

industry's sustainability. As a result, attempts to correctly 

estimate the air quality index (AQI) are crucial for effective 

air quality management, a challenge that smart cities must 

address as they become more developed soon. However, 

there are some challenges to predicting AQI. First, the results 

are influenced by various factors that low-cost sensors 

frequently skip due to the nonlinear and dynamic nature of 

multivariate air quality time-series data, leaving a gap for 

enhancements. Second, standard prediction algorithms often 

use the training data at fixed intervals and require as many 

available attributes as possible. This work reviews these 

issues by applying many Recurrent Neural Network (RNN) 

deep-learning models for the AQI dataset from PAM AIR 

stations in 10 Vietnamese tourism areas. Then, it compares 

each model's impact on the data set by leveraging deep 

learning models for early predictions based on limited but 

crucial parameters such as particulate matter 2.5 microns 

(PM2.5) levels, humidity, and temperature. It presents an 

appealing method for tackling air pollution problems while 

dataset quality is uncertain. These findings will result in a 

fast, efficient, cost-effective, and reliable model that would 

help reduce the impact on health and add to the literature on 

meteorology and air pollution while giving theoretical 

insights and practical guidance in assessing AQI and its 

dangers. It would support the government in adopting 
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efficient pollution control measures to minimize emissions 

from various sources by making informed decisions 

proactively to address air pollution challenges before they 

increase. 

 

1. INTRODUCTION 

According to the World Health 
Organization (WHO), air pollution is a 
significant global environmental threat that 
affects all continents (World Health 
Organization, n.d.). Southeast Asia and the 
Western Pacific are the most impacted regions, 
with Vietnam among the most highly affected. 
On December 4, 2023, Hanoi recorded an air 
quality index (AQI) 182 (SGGPO, 2023), 
placing it third among the world's most 
polluted cities. This problem necessitates a 
dedicated study on accurately evaluating the 
AQI, critical for effective air quality 
management—a key component in developing 
smart cities. 

Moreover, climate change and 
environmental pollution in this modern world 
significantly affect human health. One factor 
that causes climate change and environmental 
pollution is air quality. Therefore, many 
studies (Doreswamy et al., 2020; Minh et al., 
2021; Pant et al., 2018; Pruthi & Liu, 2022) 
have focused on accurately predicting air 
quality, providing recommendations for local 
authorities to improve air quality and helping 
to improve the quality of life.  

This research investigates the feasibility of 
using Recurrent Neural Network (RNN) 
variants from deep learning models on an AQI 
dataset gathered from PAM Air stations across 
ten Vietnamese sites representing diverse 
locales (PAM Air, n.d.). By employing deep 
learning algorithms to forecast AQI, primarily 
focusing on critical features such as PM2.5 
levels, humidity, and temperature, the study 
aims to develop a comprehensive AQI 
forecasting model. The goal is to create a 
speedy, efficient, cost-effective, and reliable 
model, providing practical recommendations 
for AQI estimation and risk assessment. 

The study's significance lies in its dual 
contributions: (i) it offers a comparative and 
robust experiment for evaluating deep learning 
models in AQI forecasting using the cross-

validation time series split technique, and (ii) it 
determines which deep learning technique 
outperforms others within the PAM Air dataset 
context. The accurate prediction of AQI might 
be used to evaluate the degree of air pollution 
and its influence on health. Therefore, our 
contributions are crucial because they provide 
insights into improving air quality forecasting, 
which can help local authorities develop more 
effective strategies for reducing air pollution 
based on the early forecasting result, thus 
enhancing public health and environmental 
quality. 

2. RELATED WORK 

Previous research on air pollution in 

Vietnam has primarily concentrated on large 

provinces or specialized occupational cohorts 

(Pant et al., 2018), leaving a significant gap in 

understanding visitors' brief exposure to air 

pollutants in less-studied, infrastructure-

dependent areas. Moreover, while existing 

research on using deep learning to predict air 

quality has produced models tailored to 

specific locales, such as the Weather Research 

and Forecasting (WRF) model for PM2.5 

prediction in Ho Chi Minh City (HCMC) 

(Minh et al., 2021) and various combined 

approaches, including nature-inspired deep 

learning in India (Pruthi & Liu, 2022) and 

regression-based modeling in Taiwan 

(Doreswamy et al., 2020); these studies are 

limited in scope. They either focus on specific 

models or prediction zones, thereby 

underscoring the potential for developing a 

more holistic and adaptive air quality 

forecasting model by incorporating data from 

multiple methodologies across different 

locations. 
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 In recent studies, one problem is the need to 

comprehensively evaluate and improve AQI 

forecasting models by integrating PM2.5 

levels with temporal, sensor, location, and 

meteorological data (Zhu et al., 2021), 

providing a CNN-LSTM hybrid model in 

PM2.5 forecasting. In addition, (Nguyen et al., 

2023) proposed a CNN-GRU model to predict 

the hour-average value of pollutants and AQI 

by learning rich features, where CNN is used 

as feature extraction, and GRU is used as an 

auto-regression model to prevent the 

"gradient-explosion" and RNN's "gradient-

disappearance" problems. Zhu and Nguyen 

used CNN to solve the issue of insufficient 

features, while GRU and LSTM help avoid the 

gradient explosion, thereby improving 

prediction accuracy.  

3. APPROACH 

3.1. Problem formulation 

With the context and the goal set above, 

this work set a problem to solve the difficulty 

of building an early forecasting system for 

diverse sites in Vietnam by using deep 

learning models to predict the AQI. This 

problem yields an objective of producing 

reliable AQI estimations based on the limited 

data gathered from monitoring stations via 

sensing devices. The research proposes to 

capture complicated relationships between 

four fundamental features through feature 

extraction and training to ensure accurate 

forecasts. Furthermore, the study investigates 

the accuracy and comparison to serve as a 

baseline for specific locations. This technique 

seeks to build a dependable and effective 

forecasting system for various locations in 

Vietnam, emphasizing the AQI, a crucial 

indicator of air pollution that has received 

substantial research in the field (Suman, 2021). 

Figure 1 shows the details of the steps taken 

for this approach. 

 

Figure 1. The procedure of the proposed approach. 

3.2. Dataset collection 

From April 1, 2022, at midnight to 

February 28, 2023, at 11:00 PM, the PAM Air 

quality monitoring network gathered data on 

five essential attributes: observed AQI level, 

timestamp, PM2.5 value, humidity, and 

temperature in 10 provinces. These provinces 

cover Vietnam's key regions, from Ca Mau to 

Ha Giang, the southern to northernmost point 

respectively, with some popular tourist 

destinations and provide a comprehensive 

picture of Vietnamese terrain and different 
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landscapes, as Figure 2 depicts the distribution 

of the sensor on the Vietnam terrain. 

 

Figure 2. PAM Air stations' location on the 

Vietnam map (red points). 

This selection ensures thorough geographic 

coverage and a representative sample for the 

inquiry, including various climatic variables 

from multiple places. However, the dataset 

experienced faults owing to device failures and 

unexpected issues during data collection, 

resulting in incomplete planned hourly 

numbers. As a result, considerable pre-

processing is necessary before applying the 

models to remove null values and maintain 

data integrity. This stage involves thoroughly 

analyzing the data and assertion of missing 

values. Table 1 summarizes the null values for 

each attribute in the dataset. 

Table 1. The number of null values in the data 

set used by each attribute. 

Province PM2.5 Humidity Temperature 

Cao Bang 1 1 0 

Lao Cai 1 1 0 

Quang Ninh 0 1 4512 

Ha Noi 2 0 7 

Quang Binh 2 5336 0 

Da Nang 2 0 1 

Dak Lak 41 0 39 

HCMC 3 3221 0 

Kien Giang 0 3 2 

Ca Mau 2 0 1 

3.3. Dataset pre-processing 

During the pre-processing procedure for 

time series data, considerable attention is taken 

to assure the dataset's integrity and 

completeness. Initially, the dataset is filtered to 

include only days with a minimum of 22 hours 

of recorded data, ensuring that each day 

contains at least 22 hourly records. This 

threshold guarantees adequate data coverage 

while accounting for slight gaps that may 

occur due to device faults or other 

unanticipated challenges. From then on, any 

missing hours within these filtered days, for 

example, the 23rd and 24th hours, are filled by 

taking the average of the three closest adjacent 

data points. For instance, if there is no data for 

hour 9, the average values from hours 7, 8, and 

10 fill the gap. This strategy helps retain the 
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 data's temporal continuity and reduces the 

effect of missing values on future studies. 

Each trait, such as PM2.5, humidity, and 

temperature, receives the same treatment for 

missing data to ensure uniformity across all 

variables. This technique retains the dataset's 

general structure and patterns, providing the 

pre-processed data indicates the original 

recordings. Following these pre-processing 

procedures, the transformed data sizes are 

rigorously recorded and detailed in Table 2. 

This thorough pre-processing technique 

pledges that the dataset is clean, complete, and 

ready for accurate and trustworthy modeling, 

strengthening the following exploratory data 

analyses and conclusions. 

Table 2. The number of records before and after 

the pre-processing step. 

Province Before After 

Cao Bang 7865 8016 

Lao Cai 7889 8016 

Quang Ninh 7855 7990 

Ha Noi 4864 8016 

Quang Binh 7900 8016 

Da Nang 7750 7896 

Dak Lak 4728 8016 

HCMC 7906 8016 

Kien Giang 7846 8016 

Ca Mau 6894 7320 

This approach is advantageous since 

PM2.5 is the critical determinant for AQI 

(Ghobakhloo et al., 2023). It has few null 

values, ensuring the accuracy of AQI 

estimates. This rigorous pre-processing 

technique guarantees that the dataset is 

complete and consistent, allowing for accurate 

and trustworthy AQI forecasts using time 

series data. 

3.4. Models 

3.4.1. RNN variants and CNN-based models 

The experiment examines time-series data 

using a range of deep learning models of RNN 

variants such as Long-Short Term Memory 

(LSTM), Gated Recurrent Units (GRU), and 

Convolutional Neural Networks (CNN) 

integrated with LSTM and GRU. Each 

ensemble was also derived from the basic 

model like CNN-GRU and CNN-LSTM. 

These models combine CNN's feature 

extraction abilities with the temporal 

processing capabilities of LSTMs and GRUs. 

GRU and LSTM have also been extensively 

tested in conventional and bidirectional 

topologies to provide additional performance 

comparisons (Méndez et al., 2023). These 

models use batch size 32 to examine historical 

patterns and forecast future air quality, 

including temporal trends from the preceding 

23 hours of data. The primary objective is to 

generate solid and trustworthy forecasts for the 

following day's air quality, using each model's 

capabilities to deal with the intricacies of 

temporal data. By concentrating on the most 

recent 23 hours, these models are well-

equipped to identify and anticipate patterns 

that affect air quality. Python was the 

programming language for the whole process, 

including the TensorFlow library (Abadi et al., 

2016) for hyperparameter modification and 

model selection. The study attempts to identify 

correlations and trends in the data by 

optimizing hyperparameters using a grid or 

random search on cross-validation folds, 

determining the best configuration for each 

model to increase prediction accuracy. 
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3.4.2. Parameters grid search 

A parameter grid search was used to 

determine the ideal parameters for each model 

to achieve optimum performance. The CNN-

GRU, CNN-LSTM, Bidirectional GRU 

(BiGRU), Bidirectional LSTM (BiLSTM), 

LSTM, and GRU models were repeatedly 

trained for 50 epochs and assessed using 

various parameters such as unit ratio, dropout 

ratio, pooling, kernel, and filter size. This 

thorough parameter tuning process ensures 

that each model performs to its total capacity, 

producing accurate and dependable air quality 

projections for each province and model 

configuration. 

3.4.3. Cross-validation chaining 

The cross-validation chaining approach 

analyzes the training dataset by systematically 

examining each new testing fold, integrating it 

with the training data, and continuing until all 

ten folds of the original training set have been 

used. This comprehensive approach ensures 

accurate performance assessments and 

consistency across seasonal air quality 

variations by eliminating bias when splitting 

the training and testing sets. As a result, the 

model's robustness improves, allowing for a 

more reliable evaluation of its predictive 

capabilities. 

3.5. Metric evaluation  

Previous papers often used statistical 

measures to assess the model's accuracy when 

evaluating predicted AQI. Root Mean Square 

Error (RMSE) is a crucial predictor of 

predictive ability among these measurements. 

RMSE measures the average size of the errors 

between projected and observed values, 

explaining how well the model's predictions 

match the actual data (Chai & Draxler, 2014) 

represented by the formula in (1).  

2
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i i
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n 
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(1) 

Conversely, Mean Absolute Error (MAE) 

is another important parameter for evaluating 

models. MAE calculates the average absolute 

difference between expected and observed 

values, resulting in a consistent assessment of 

prediction errors. Unlike RMSE, MAE does 

not square errors and treats all variances 

equally (Willmott & Matsuura, 2005). This 

feature makes MAE helpful in estimating the 

extent of prediction errors in the absence of 

outliers, with the formula to calculate as in (2). 

With these two metrics, the efficiency of each 

model can be analyzed, and from then on, any 

fine-tuning process would be based on these 

metrics to make some improvements. 
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(2) 

4. EXPERIMENTAL RESULTS AND 

ANALYSIS  

4.1. Exploratory data analysis 

The ten provinces' air quality index data 

show various patterns and seasonal 

fluctuations. The winter months, namely 

November, December, January, and February, 

tend to have the highest AQI readings, 

suggesting the influence of heating activities, 

weather patterns, and industrial pollutants, as 

shown in Table 3. 

 

 

 



 JOURNAL OF SCIENCE AND TECHNOLOGY DONG NAI TECHNOLOGY UNIVERSITY 

 

186 Special Issue 

 
 

Table 3. Summary of notable AQI values in each province. 

Province 
Peak Month Peak Hour 

Min Max 
Month Mean Value Hour Mean Value 

Cao Bang February 85.5 11 55.99 0 177 

Lao Cai April 42.3 7 35.65 1 98 

Quang Ninh December 58.0 20 39.69 0 153 

Ha Noi February 39.9 21 24.87 2 129 

Quang Binh February 86.8 8 66.61 1 200 

Da Nang February 26.7 9 25.57 1 90 

Dak Lak April 11.8 17 5.75 0 51 

HCMC February 75.9 7 75.22 4 183 

Kien Giang February 70.7 20 34.90 3 133 

Ca Mau February 42.0 7 37.16 4 139 

HCMC had the highest AQI values in 

February, with a substantial mean of 75.9, 

suggesting severe pollution events. This result 

raises significant pollution problems for the 

winter season. In contrast, Kien Giang 

elevated AQI trends in February, with a high 

AQI of 133, but maintained a pretty excellent 

average AQI throughout the year. Similarly, 

Cao Bang has high pollution levels in 

February, with a peak mean value of 85.5 and 

a maximum of 177, showing severe pollution 

early in the year. 

Other provinces have distinct patterns. Lao 

Cai has significant swings, with an elevated 

AQI in April, with a high mean value of 42.3 

and a maximum of 98, suggesting pollution at 

this time. Quang Binh had the highest 

maximum AQI of 200 in February, indicating 

severe pollution incidents, with an average 

score of 86.8. Quang Ninh peaks in December, 

with a mean of 58.0 and a high of 153, 

suggesting heavy pollution over the winter. 

Da Nang and Ca Mau have seasonal peaks 

in February, with Da Nang having a mean AQI 

of 26.7 and a high of 90, indicating moderate 

air quality with significant increases at the 

start of the year. Ca Mau also peaks in 

February, with a mean of 42.0 and a high of 

139, suggesting increasing pollution at this 

season. Ha Noi shows strong AQI oscillations, 

with high peaks in February (mean value of 

39.9 and highest of 129), indicating severe 

pollution. Dak Lak has the lowest AQI values 

of any province, with a minor rise in April and 

a mean score of 11.8, suggesting generally 

clean air. 

4.2. Models' parameters setting 

Table 4 displays the optimal parameters for 

LSTM, GRU, bidirectional versions, and 

hybrid CNN-based models. After extensive 

parameter tuning, the best setups for LSTM 

and GRU models are configured with units of 

100 and 150, respectively, and a dropout ratio 

of 0.1. The optimal parameters for hybrid 

CNN-based models, combining CNN with 

LSTM and GRU, include a filter size of 16, a 

kernel size of 8, and a pooling size of 4, along 

with an LSTM or GRU unit size of 100 and a 

dropout ratio of 0.1. 
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Table 4. Parameters of the model. 

Parameters Models used 

unit_1 = 100 

unit_2 = 150 

dropout_ratio = 0.1 

LSTM, BiLSTM, 

GRU, BiGRU 

filter_size = 16 

kernel_size = 8 

pooling = 4 

unit = 100 

dropout_ratio = 0.1 

CNN + LSTM, 

CNN + GRU 

4.3. Models' result 

Before achieving the final performance 

metrics, the models were rerun on the pre-

processed dataset using the epitome parameters 

determined during the initial model tuning phase, 

as reported above. Tables 5 and 6 summarize the 

results for each model throughout the provinces, 

including the MAE and RMSE. The bolded scores 

represent the models' maximum accuracy levels, 

demonstrating the parameter-tuning procedure's 

efficacy. These findings demonstrate the potential 

of deep learning models for forecasting AQI levels, 

providing valuable insights into performance 

disparities among provinces and serving as a 

reference point for understanding models' 

capabilities in various environmental scenarios in a 

clear and organized format. 

 

 

 

 

 

 

Table 5. MAE metric on each model per province. 

Province LSTM BiLSTM GRU BiGRU 
CNN + 

LSTM 

CNN + 

GRU 

Cao Bang 2.924 2.752 2.902 2.793 6.210 5.862 

Lao Cai 2.271 2.165 2.191 2.157 4.022 3.981 

Quang Ninh 1.751 1.687 1.661 1.676 3.651 3.844 

Ha Noi 1.362 1.337 1.336 1.252 3.219 3.197 

Quang Binh 2.528 2.295 2.232 2.144 5.108 5.100 

Da Nang 1.984 1.982 1.930 1.957 3.488 3.610 

Dak Lak 0.710 0.676 0.685 0.665 1.280 1.316 

HCMC 3.123 2.988 3.075 3.084 6.015 6.399 

Kien Giang 2.258 2.256 2.253 2.261 4.725 4.418 

Ca Mau 2.440 2.420 2.507 2.442 4.360 4.287 
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Table 6. RMSE metric on each model per province. 

Province LSTM BiLSTM GRU BiGRU 
CNN + 

LSTM 

CNN + 

GRU 

Cao Bang 5.057 4.907 5.104 4.921 9.267 8.778 

Lao Cai 4.405 4.268 4.409 4.252 6.532 6.408 

Quang Ninh 2.715 2.640 2.626 2.620 5.151 5.365 

Ha Noi 2.161 2.157 2.187 2.102 4.937 4.926 

Quang Binh 4.704 4.463 4.454 4.350 8.382 8.350 

Da Nang 4.220 4.157 4.106 4.074 6.635 6.708 

Dak Lak 1.309 1.275 1.303 1.270 2.114 2.154 

HCMC 5.598 5.427 5.552 5.548 9.696 10.264 

Kien Giang 4.473 4.452 4.451 4.455 8.291 7.232 

Ca Mau 4.958 4.895 5.003 4.893 7.595 7.322 

The MAE and RMSE metrics reveal that 

BiLSTM and BiGRU models outperform their 

regular usage, with fewer errors across most 

provinces, signaling the likelihood of being 

used on general prediction across Vietnam. 

Notably, locations like HCMC and Quang 

Binh had more significant prediction errors, 

indicating complicated air quality patterns. In 

contrast, provinces like Dak Lak and Kien 

Giang had lower errors, implying more stable 

conditions for the model to learn. To further 

examine the result in each fold, Figures 3 and 

4 show the MAE and RMSE metrics on each 

fold during the training process for ten 

provinces using the optimal parameters, 

respectively.

 

Figure 3. MAE metrics for each fold per province. 
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Figure 4. RMSE metrics for each fold per province. 

The MAE plot confirms these findings, 

with Dak Lak continuously exhibiting low 

error values, suggesting that the models in this 

area are resilient and reliable. In contrast, 

HCMC and Cao Bang show significant 

oscillations and excellent error rates, 

emphasizing the difficulties in reliably 

forecasting AQI owing to potentially more 

complex pollution sources or unpredictability 

in air quality parameters. Similarly, the RMSE 

figure demonstrates that provinces such as Dak 

Lak and Ha Noi consistently maintain low 

error levels, indicating excellent and reliable 

forecasting accuracy. However, provinces like 

HCM and Cao Bang have higher and more 

variable RMSE values, especially in the last 

folds of the data. This result indicates that the 

model's performance in specific locations is 

less reliable and might benefit from more 

refinement and development to address the 

underlying difficulties better. In addition, 

Figures 5 and 6 present the predicted value 

versus the actual value of AQI for the best 

case in Dak Lak using BiGRU and the worst 

case of HCMC using BiLSTM over the last 

three days in the dataset. 

 

Figure 5. Predicted and actual value plot on Dak Lak's best model configuration. 
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Figure 6. Predicted and actual value plot on HCMC best model configuration. 

5. DISCUSSION 

The setup for the LSTM and GRU-based 

models consists of two units of size 100 and 

150, respectively, with a dropout ratio of 0.1. 

These parameters attempt to improve the 

models' ability to capture complex temporal 

patterns in data while reducing the danger of 

overfitting. The dropout ratio guarantees that 

10% of neurons are discarded randomly during 

training, promoting model generalization and 

resilience. 

To accommodate spatial aspects in data 

before temporal processing, the CNN + LSTM 

and CNN + GRU models include extra 

parameters such as filter size, kernel size, and 

pooling size. The filter size of 16 and kernel 

size of 8 are intended to successfully discover 

local patterns within the input data, while the 

pooling size of 4 aids in data dimensionality 

reduction, making the computational process 

more efficient and avoiding overfitting. The 

processed input is then fed to 100-unit LSTM 

or GRU units adjusted to capture and learn 

temporal relationships. The LSTM and GRU 

unit sizes combine model complexity and the 

capacity to discover long-term relationships 

from time-series data. The dropout ratio 

contributes to model performance by reducing 

overreliance on specific neurons, which may 

lead to overfitting. In CNN-based models, the 

combination of spatial and temporal feature 

extraction using suitable filter and kernel sizes, 

followed by pooling, guarantees that the 

models can manage the intricacies of air 

quality data. This comprehensive methodology 

improves the models' capacity to correctly 

predict air quality measurements, making them 

valuable tools for forecasting in the research.  

Certain provinces have greater error scores 

than others, indicating disparities in forecast 

accuracy across areas. For example, Dak Lak 

and Ha Noi had lower RMSE and MAE 

values, indicating more accurate forecasts. In 

contrast, provinces like Ca Mau, Cao Bang, 

and HCMC have more significant error scores, 



 

 

191 JOURNAL OF SCIENCE AND TECHNOLOGY DONG NAI TECHNOLOGY UNIVERSITY Special Issue 

suggesting more prediction difficulties. These 

patterns demonstrate the heterogeneity in 

model performance across regions, indicating 

that although the model works well in certain 

areas, particular provinces need focused 

changes to increase overall accuracy. These 

observations are critical for improving and 

calibrating the model to manage Vietnam's 

geographical peculiarities. They might also be 

due to the consistency and quality of data 

available for these places or to the lower 

fluctuation in AQI levels, making prediction 

more straightforward. The large error values 

might be due to more unpredictable AQI 

patterns, which may be impacted by local 

environmental conditions, industrial activity, 

or discrepancies in data collection. 

The variation in error levels across the 

folds emphasizes the difficulties of developing 

a generally accurate model for AQI prediction. 

Some provinces' data may have more noise or 

outliers, affecting the model's performance. 

Future work should focus on enhancing data 

quality and consistency by including more 

advanced models or new features to capture 

local variances better. Addressing these 

challenges may result in more dependable and 

accurate AQI estimates, improving public 

health monitoring and environmental planning 

initiatives. 

6. CONCLUSION 

The paper proposed using several machine 

learning models and compared how the 

prediction accuracy of AQI varies between 

provinces in Vietnam. This heterogeneity 

emphasizes the difficulty of effectively 

estimating AQI owing to variables such as 

data quality, local environmental 

circumstances, and intrinsic model constraints. 

Provinces with lower mistake rates may 

benefit from more consistent data or less 

ecological variability. In comparison, those 

with higher error rates may need help owing to 

noisier data or more chaotic AQI patterns. The 

research also underlines the need to improve 

data-processing techniques using low-cost 

devices while maintaining the minimum set of 

variables. These improvements may increase 

model performance, particularly in regions 

with more significant prediction errors. Future 

research should create more advanced models 

capable of handling varied and noisy 

information and investigating domain-specific 

factors that may increase prediction accuracy. 

Furthermore, collaborating with local 

authorities to standardize the data-collecting 

techniques and add real-time data might 

improve model dependability. Future research 

may enhance AQI estimates by addressing 

these issues, resulting in improved public 

health monitoring and environmental 

management results. 
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